Upload SFT/README.md with huggingface_hub
Browse files- SFT/README.md +74 -0
SFT/README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- llama-factory
|
6 |
+
- lora
|
7 |
+
- generated_from_trainer
|
8 |
+
base_model: saves/Orca/merge_unload
|
9 |
+
model-index:
|
10 |
+
- name: SFT
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# SFT
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [saves/Orca/merge_unload](https://huggingface.co/saves/Orca/merge_unload) on the WordProblems_SFT dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.1966
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 4
|
42 |
+
- eval_batch_size: 4
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- num_devices: 4
|
46 |
+
- gradient_accumulation_steps: 2
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- total_eval_batch_size: 16
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: cosine
|
51 |
+
- lr_scheduler_warmup_steps: 300
|
52 |
+
- num_epochs: 2.0
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
57 |
+
|:-------------:|:------:|:----:|:---------------:|
|
58 |
+
| 0.2823 | 0.2425 | 250 | 0.2783 |
|
59 |
+
| 0.2186 | 0.4850 | 500 | 0.2229 |
|
60 |
+
| 0.2227 | 0.7274 | 750 | 0.2104 |
|
61 |
+
| 0.1965 | 0.9699 | 1000 | 0.2038 |
|
62 |
+
| 0.2001 | 1.2124 | 1250 | 0.2003 |
|
63 |
+
| 0.2087 | 1.4549 | 1500 | 0.1980 |
|
64 |
+
| 0.1932 | 1.6974 | 1750 | 0.1969 |
|
65 |
+
| 0.2044 | 1.9399 | 2000 | 0.1966 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- PEFT 0.10.0
|
71 |
+
- Transformers 4.40.2
|
72 |
+
- Pytorch 2.0.1+cu118
|
73 |
+
- Datasets 2.17.1
|
74 |
+
- Tokenizers 0.19.1
|