--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: microsoft/Orca-2-7b model-index: - name: lora results: [] --- # lora This model is a fine-tuned version of [microsoft/Orca-2-7b](https://huggingface.co/microsoft/Orca-2-7b) on the Pretrain_Basic dataset. It achieves the following results on the evaluation set: - Loss: 0.4452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5009 | 0.1586 | 500 | 0.4964 | | 0.4641 | 0.3172 | 1000 | 0.4591 | | 0.4514 | 0.4758 | 1500 | 0.4516 | | 0.4522 | 0.6344 | 2000 | 0.4482 | | 0.4436 | 0.7930 | 2500 | 0.4459 | | 0.4463 | 0.9516 | 3000 | 0.4452 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.0.1+cu118 - Datasets 2.17.1 - Tokenizers 0.19.1