perticarari commited on
Commit
ca5311f
·
verified ·
1 Parent(s): 1ddc135

Initial commit

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,438 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ - en
5
+ - es
6
+ - fr
7
+ - it
8
+ - nl
9
+ - pl
10
+ - pt
11
+ - ru
12
+ - zh
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:5749
19
+ - loss:CosineSimilarityLoss
20
+ base_model: sentence-transformers/all-MiniLM-L6-v2
21
+ widget:
22
+ - source_sentence: The man talked to a girl over the internet camera.
23
+ sentences:
24
+ - A group of elderly people pose around a dining table.
25
+ - A teenager talks to a girl over a webcam.
26
+ - There is no 'still' that is not relative to some other object.
27
+ - source_sentence: A woman is writing something.
28
+ sentences:
29
+ - Two eagles are perched on a branch.
30
+ - It refers to the maximum f-stop (which is defined as the ratio of focal length
31
+ to effective aperture diameter).
32
+ - A woman is chopping green onions.
33
+ - source_sentence: The player shoots the winning points.
34
+ sentences:
35
+ - Minimum wage laws hurt the least skilled, least productive the most.
36
+ - The basketball player is about to score points for his team.
37
+ - Sheep are grazing in the field in front of a line of trees.
38
+ - source_sentence: Stars form in star-formation regions, which itself develop from
39
+ molecular clouds.
40
+ sentences:
41
+ - Although I believe Searle is mistaken, I don't think you have found the problem.
42
+ - It may be possible for a solar system like ours to exist outside of a galaxy.
43
+ - A blond-haired child performing on the trumpet in front of a house while his younger
44
+ brother watches.
45
+ - source_sentence: While Queen may refer to both Queen regent (sovereign) or Queen
46
+ consort, the King has always been the sovereign.
47
+ sentences:
48
+ - At first, I thought this is a bit of a tricky question.
49
+ - A man sitting on the floor in a room is strumming a guitar.
50
+ - There is a very good reason not to refer to the Queen's spouse as "King" - because
51
+ they aren't the King.
52
+ datasets:
53
+ - PhilipMay/stsb_multi_mt
54
+ pipeline_tag: sentence-similarity
55
+ library_name: sentence-transformers
56
+ metrics:
57
+ - pearson_cosine
58
+ - spearman_cosine
59
+ model-index:
60
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
61
+ results:
62
+ - task:
63
+ type: semantic-similarity
64
+ name: Semantic Similarity
65
+ dataset:
66
+ name: Unknown
67
+ type: unknown
68
+ metrics:
69
+ - type: pearson_cosine
70
+ value: 0.8489898349501925
71
+ name: Pearson Cosine
72
+ - type: spearman_cosine
73
+ value: 0.8517927995542077
74
+ name: Spearman Cosine
75
+ - type: pearson_cosine
76
+ value: 0.8902467318804244
77
+ name: Pearson Cosine
78
+ - type: spearman_cosine
79
+ value: 0.8909158247949323
80
+ name: Spearman Cosine
81
+ ---
82
+
83
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
84
+
85
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
86
+
87
+ ## Model Details
88
+
89
+ ### Model Description
90
+ - **Model Type:** Sentence Transformer
91
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
92
+ - **Maximum Sequence Length:** 256 tokens
93
+ - **Output Dimensionality:** 384 dimensions
94
+ - **Similarity Function:** Cosine Similarity
95
+ - **Training Dataset:**
96
+ - [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt)
97
+ - **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
98
+ <!-- - **License:** Unknown -->
99
+
100
+ ### Model Sources
101
+
102
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
103
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
104
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
105
+
106
+ ### Full Model Architecture
107
+
108
+ ```
109
+ SentenceTransformer(
110
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
111
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
112
+ (2): Normalize()
113
+ )
114
+ ```
115
+
116
+ ## Usage
117
+
118
+ ### Direct Usage (Sentence Transformers)
119
+
120
+ First install the Sentence Transformers library:
121
+
122
+ ```bash
123
+ pip install -U sentence-transformers
124
+ ```
125
+
126
+ Then you can load this model and run inference.
127
+ ```python
128
+ from sentence_transformers import SentenceTransformer
129
+
130
+ # Download from the 🤗 Hub
131
+ model = SentenceTransformer("sentence_transformers_model_id")
132
+ # Run inference
133
+ sentences = [
134
+ 'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
135
+ 'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
136
+ 'A man sitting on the floor in a room is strumming a guitar.',
137
+ ]
138
+ embeddings = model.encode(sentences)
139
+ print(embeddings.shape)
140
+ # [3, 384]
141
+
142
+ # Get the similarity scores for the embeddings
143
+ similarities = model.similarity(embeddings, embeddings)
144
+ print(similarities.shape)
145
+ # [3, 3]
146
+ ```
147
+
148
+ <!--
149
+ ### Direct Usage (Transformers)
150
+
151
+ <details><summary>Click to see the direct usage in Transformers</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Downstream Usage (Sentence Transformers)
158
+
159
+ You can finetune this model on your own dataset.
160
+
161
+ <details><summary>Click to expand</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Out-of-Scope Use
168
+
169
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
170
+ -->
171
+
172
+ ## Evaluation
173
+
174
+ ### Metrics
175
+
176
+ #### Semantic Similarity
177
+
178
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
179
+
180
+ | Metric | Value |
181
+ |:--------------------|:-----------|
182
+ | pearson_cosine | 0.849 |
183
+ | **spearman_cosine** | **0.8518** |
184
+
185
+ #### Semantic Similarity
186
+
187
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
188
+
189
+ | Metric | Value |
190
+ |:--------------------|:-----------|
191
+ | pearson_cosine | 0.8902 |
192
+ | **spearman_cosine** | **0.8909** |
193
+
194
+ <!--
195
+ ## Bias, Risks and Limitations
196
+
197
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
198
+ -->
199
+
200
+ <!--
201
+ ### Recommendations
202
+
203
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
204
+ -->
205
+
206
+ ## Training Details
207
+
208
+ ### Training Dataset
209
+
210
+ #### stsb_multi_mt
211
+
212
+ * Dataset: [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
213
+ * Size: 5,749 training samples
214
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
215
+ * Approximate statistics based on the first 1000 samples:
216
+ | | sentence1 | sentence2 | score |
217
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
218
+ | type | string | string | float |
219
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
220
+ * Samples:
221
+ | sentence1 | sentence2 | score |
222
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:--------------------------------|
223
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
224
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.7599999904632568</code> |
225
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.7599999904632568</code> |
226
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
227
+ ```json
228
+ {
229
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
230
+ }
231
+ ```
232
+
233
+ ### Evaluation Dataset
234
+
235
+ #### stsb_multi_mt
236
+
237
+ * Dataset: [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
238
+ * Size: 1,500 evaluation samples
239
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
240
+ * Approximate statistics based on the first 1000 samples:
241
+ | | sentence1 | sentence2 | score |
242
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
243
+ | type | string | string | float |
244
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
245
+ * Samples:
246
+ | sentence1 | sentence2 | score |
247
+ |:--------------------------------------------------|:------------------------------------------------------|:-------------------------------|
248
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
249
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.949999988079071</code> |
250
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
251
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
252
+ ```json
253
+ {
254
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
255
+ }
256
+ ```
257
+
258
+ ### Training Hyperparameters
259
+ #### Non-Default Hyperparameters
260
+
261
+ - `eval_strategy`: steps
262
+ - `learning_rate`: 0.0001
263
+
264
+ #### All Hyperparameters
265
+ <details><summary>Click to expand</summary>
266
+
267
+ - `overwrite_output_dir`: False
268
+ - `do_predict`: False
269
+ - `eval_strategy`: steps
270
+ - `prediction_loss_only`: True
271
+ - `per_device_train_batch_size`: 8
272
+ - `per_device_eval_batch_size`: 8
273
+ - `per_gpu_train_batch_size`: None
274
+ - `per_gpu_eval_batch_size`: None
275
+ - `gradient_accumulation_steps`: 1
276
+ - `eval_accumulation_steps`: None
277
+ - `torch_empty_cache_steps`: None
278
+ - `learning_rate`: 0.0001
279
+ - `weight_decay`: 0.0
280
+ - `adam_beta1`: 0.9
281
+ - `adam_beta2`: 0.999
282
+ - `adam_epsilon`: 1e-08
283
+ - `max_grad_norm`: 1.0
284
+ - `num_train_epochs`: 3.0
285
+ - `max_steps`: -1
286
+ - `lr_scheduler_type`: linear
287
+ - `lr_scheduler_kwargs`: {}
288
+ - `warmup_ratio`: 0.0
289
+ - `warmup_steps`: 0
290
+ - `log_level`: passive
291
+ - `log_level_replica`: warning
292
+ - `log_on_each_node`: True
293
+ - `logging_nan_inf_filter`: True
294
+ - `save_safetensors`: True
295
+ - `save_on_each_node`: False
296
+ - `save_only_model`: False
297
+ - `restore_callback_states_from_checkpoint`: False
298
+ - `no_cuda`: False
299
+ - `use_cpu`: False
300
+ - `use_mps_device`: False
301
+ - `seed`: 42
302
+ - `data_seed`: None
303
+ - `jit_mode_eval`: False
304
+ - `use_ipex`: False
305
+ - `bf16`: False
306
+ - `fp16`: False
307
+ - `fp16_opt_level`: O1
308
+ - `half_precision_backend`: auto
309
+ - `bf16_full_eval`: False
310
+ - `fp16_full_eval`: False
311
+ - `tf32`: None
312
+ - `local_rank`: 0
313
+ - `ddp_backend`: None
314
+ - `tpu_num_cores`: None
315
+ - `tpu_metrics_debug`: False
316
+ - `debug`: []
317
+ - `dataloader_drop_last`: False
318
+ - `dataloader_num_workers`: 0
319
+ - `dataloader_prefetch_factor`: None
320
+ - `past_index`: -1
321
+ - `disable_tqdm`: False
322
+ - `remove_unused_columns`: True
323
+ - `label_names`: None
324
+ - `load_best_model_at_end`: False
325
+ - `ignore_data_skip`: False
326
+ - `fsdp`: []
327
+ - `fsdp_min_num_params`: 0
328
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
329
+ - `fsdp_transformer_layer_cls_to_wrap`: None
330
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
331
+ - `deepspeed`: None
332
+ - `label_smoothing_factor`: 0.0
333
+ - `optim`: adamw_torch
334
+ - `optim_args`: None
335
+ - `adafactor`: False
336
+ - `group_by_length`: False
337
+ - `length_column_name`: length
338
+ - `ddp_find_unused_parameters`: None
339
+ - `ddp_bucket_cap_mb`: None
340
+ - `ddp_broadcast_buffers`: False
341
+ - `dataloader_pin_memory`: True
342
+ - `dataloader_persistent_workers`: False
343
+ - `skip_memory_metrics`: True
344
+ - `use_legacy_prediction_loop`: False
345
+ - `push_to_hub`: False
346
+ - `resume_from_checkpoint`: None
347
+ - `hub_model_id`: None
348
+ - `hub_strategy`: every_save
349
+ - `hub_private_repo`: False
350
+ - `hub_always_push`: False
351
+ - `gradient_checkpointing`: False
352
+ - `gradient_checkpointing_kwargs`: None
353
+ - `include_inputs_for_metrics`: False
354
+ - `include_for_metrics`: []
355
+ - `eval_do_concat_batches`: True
356
+ - `fp16_backend`: auto
357
+ - `push_to_hub_model_id`: None
358
+ - `push_to_hub_organization`: None
359
+ - `mp_parameters`:
360
+ - `auto_find_batch_size`: False
361
+ - `full_determinism`: False
362
+ - `torchdynamo`: None
363
+ - `ray_scope`: last
364
+ - `ddp_timeout`: 1800
365
+ - `torch_compile`: False
366
+ - `torch_compile_backend`: None
367
+ - `torch_compile_mode`: None
368
+ - `dispatch_batches`: None
369
+ - `split_batches`: None
370
+ - `include_tokens_per_second`: False
371
+ - `include_num_input_tokens_seen`: False
372
+ - `neftune_noise_alpha`: None
373
+ - `optim_target_modules`: None
374
+ - `batch_eval_metrics`: False
375
+ - `eval_on_start`: False
376
+ - `use_liger_kernel`: False
377
+ - `eval_use_gather_object`: False
378
+ - `average_tokens_across_devices`: False
379
+ - `prompts`: None
380
+ - `batch_sampler`: batch_sampler
381
+ - `multi_dataset_batch_sampler`: proportional
382
+
383
+ </details>
384
+
385
+ ### Training Logs
386
+ | Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
387
+ |:------:|:----:|:-------------:|:---------------:|:---------------:|
388
+ | 0 | 0 | - | - | 0.8203 |
389
+ | 0.6954 | 500 | 0.0255 | 0.0234 | 0.8777 |
390
+ | 1.3908 | 1000 | 0.0154 | 0.0236 | 0.8877 |
391
+ | 2.0862 | 1500 | 0.009 | 0.0224 | 0.8885 |
392
+ | 2.7816 | 2000 | 0.0055 | 0.0222 | 0.8909 |
393
+ | 3.0 | 2157 | - | - | 0.8518 |
394
+
395
+
396
+ ### Framework Versions
397
+ - Python: 3.10.12
398
+ - Sentence Transformers: 3.3.1
399
+ - Transformers: 4.46.2
400
+ - PyTorch: 2.5.1+cu121
401
+ - Accelerate: 1.1.1
402
+ - Datasets: 3.1.0
403
+ - Tokenizers: 0.20.3
404
+
405
+ ## Citation
406
+
407
+ ### BibTeX
408
+
409
+ #### Sentence Transformers
410
+ ```bibtex
411
+ @inproceedings{reimers-2019-sentence-bert,
412
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
413
+ author = "Reimers, Nils and Gurevych, Iryna",
414
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
415
+ month = "11",
416
+ year = "2019",
417
+ publisher = "Association for Computational Linguistics",
418
+ url = "https://arxiv.org/abs/1908.10084",
419
+ }
420
+ ```
421
+
422
+ <!--
423
+ ## Glossary
424
+
425
+ *Clearly define terms in order to be accessible across audiences.*
426
+ -->
427
+
428
+ <!--
429
+ ## Model Card Authors
430
+
431
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
432
+ -->
433
+
434
+ <!--
435
+ ## Model Card Contact
436
+
437
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
438
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6727a808a28171174d256010aaa386500dbe45a5860829ac0210545f6bd8ff1
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff