File size: 15,689 Bytes
68ad462
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f66356cd1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f66356cc880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678401034902632000, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYffcPv1hg7m+3ww/YffcPv1hg7m+3ww/YffcPv1hg7m+3ww/YffcPv1hg7m+3ww/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1eTCPyZ/qb++EzQ/69iQP1BNbz5FZEA/heaaP/Qqmj+MlQ8/rMY3v57W3L5kuY2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABh99w+/WGDub7fDD/weJc6yofMulXPHTxh99w+/WGDub7fDD/weJc6yofMulXPHTxh99w+/WGDub7fDD/weJc6yofMulXPHTxh99w+/WGDub7fDD/weJc6yofMulXPHTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 4.3157485e-01 -2.5059274e-04  5.5028903e-01]\n [ 4.3157485e-01 -2.5059274e-04  5.5028903e-01]\n [ 4.3157485e-01 -2.5059274e-04  5.5028903e-01]\n [ 4.3157485e-01 -2.5059274e-04  5.5028903e-01]]", "desired_goal": "[[ 1.5226084  -1.3241928   0.70342624]\n [ 1.1316198   0.23369336  0.75153   ]\n [ 1.2101599   1.2044358   0.56087565]\n [-0.71787524 -0.4313249  -1.1072202 ]]", "observation": "[[ 4.3157485e-01 -2.5059274e-04  5.5028903e-01  1.1556428e-03\n  -1.5604433e-03  9.6319513e-03]\n [ 4.3157485e-01 -2.5059274e-04  5.5028903e-01  1.1556428e-03\n  -1.5604433e-03  9.6319513e-03]\n [ 4.3157485e-01 -2.5059274e-04  5.5028903e-01  1.1556428e-03\n  -1.5604433e-03  9.6319513e-03]\n [ 4.3157485e-01 -2.5059274e-04  5.5028903e-01  1.1556428e-03\n  -1.5604433e-03  9.6319513e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/3TXPObluD1q7fE9lOoUvijlED5t0nE+ReEVPj4hBb6Splk+Ibf6vfvrmrwtE9Q9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1943899e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12  1.9740014e-01]]", "desired_goal": "[[ 0.02630091  0.09028225  0.11812861]\n [-0.1454261   0.14149916  0.23615427]\n [ 0.14636715 -0.13000962  0.21254948]\n [-0.1224196  -0.01891135  0.1035522 ]]", "observation": "[[ 3.8439669e-02 -2.1943899e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICvSJPEm6yL+UhpRSlIwBbJRLMowBdJRHQJ0RRssQNCt1fZQoaAZoCWgPQwhS19r7VBXRv5SGlFKUaBVLMmgWR0CdEQrfcer/dX2UKGgGaAloD0MIOIdrtYe9zL+UhpRSlGgVSzJoFkdAnRDUqhDgInV9lChoBmgJaA9DCKpjldIzvcq/lIaUUpRoFUsyaBZHQJ0QoLx7RfF1fZQoaAZoCWgPQwjecYqO5PLTv5SGlFKUaBVLMmgWR0CdEhRdQfp2dX2UKGgGaAloD0MImE7rNqj907+UhpRSlGgVSzJoFkdAnRHYcFQl8nV9lChoBmgJaA9DCFDCTNu/stS/lIaUUpRoFUsyaBZHQJ0RokIHC411fZQoaAZoCWgPQwhBKO/jaI7Iv5SGlFKUaBVLMmgWR0CdEW5ZbILgdX2UKGgGaAloD0MIHVa45SMp1L+UhpRSlGgVSzJoFkdAnRL5uMuOCHV9lChoBmgJaA9DCMXIkjmW9+K/lIaUUpRoFUsyaBZHQJ0SvdP+GXZ1fZQoaAZoCWgPQwjRzJNrCmTkv5SGlFKUaBVLMmgWR0CdEogyM1jzdX2UKGgGaAloD0MI0xbX+Ez2z7+UhpRSlGgVSzJoFkdAnRJUVafSQnV9lChoBmgJaA9DCCRh304iwt+/lIaUUpRoFUsyaBZHQJ0Tyg+Qlrx1fZQoaAZoCWgPQwieflAXKZTLv5SGlFKUaBVLMmgWR0CdE44cWCVbdX2UKGgGaAloD0MIG/LPDOIDwb+UhpRSlGgVSzJoFkdAnRNX9aUzK3V9lChoBmgJaA9DCP2hmSfXFNu/lIaUUpRoFUsyaBZHQJ0TJAGB4D91fZQoaAZoCWgPQwj8ijVc5J7Wv5SGlFKUaBVLMmgWR0CdFMGjbi6ydX2UKGgGaAloD0MIu+8YHvtZ2L+UhpRSlGgVSzJoFkdAnRSFtCRfW3V9lChoBmgJaA9DCME4uHTMedW/lIaUUpRoFUsyaBZHQJ0UT4AS39d1fZQoaAZoCWgPQwjaq4+Hvrvfv5SGlFKUaBVLMmgWR0CdFBwyZa3adX2UKGgGaAloD0MICAJk6NhB0r+UhpRSlGgVSzJoFkdAnRWYlUp/gHV9lChoBmgJaA9DCGFSfHxCdty/lIaUUpRoFUsyaBZHQJ0VXJGOMl11fZQoaAZoCWgPQwiG56ViY17Xv5SGlFKUaBVLMmgWR0CdFSZqmCRPdX2UKGgGaAloD0MImkNSCyWT1L+UhpRSlGgVSzJoFkdAnRTynDR+jXV9lChoBmgJaA9DCJiFdk6zQNe/lIaUUpRoFUsyaBZHQJ0WbHMlkYp1fZQoaAZoCWgPQwg4L058taPbv5SGlFKUaBVLMmgWR0CdFjCGvfTDdX2UKGgGaAloD0MIx6ATQgddur+UhpRSlGgVSzJoFkdAnRX6Wkadc3V9lChoBmgJaA9DCB3pDIy8rNS/lIaUUpRoFUsyaBZHQJ0VxnoPkJd1fZQoaAZoCWgPQwgc8PlhhPDVv5SGlFKUaBVLMmgWR0CdFzlyzXz2dX2UKGgGaAloD0MIk6ZB0TyAz7+UhpRSlGgVSzJoFkdAnRb9iYsunXV9lChoBmgJaA9DCOf7qfHSTcK/lIaUUpRoFUsyaBZHQJ0Wx10T1011fZQoaAZoCWgPQwiT/IhfsYbXv5SGlFKUaBVLMmgWR0CdFpNVBD5TdX2UKGgGaAloD0MITl/P1yyXyb+UhpRSlGgVSzJoFkdAnRgJf6XSjXV9lChoBmgJaA9DCAFPWriswtu/lIaUUpRoFUsyaBZHQJ0XzZnL7oB1fZQoaAZoCWgPQwhKQbeXNEbDv5SGlFKUaBVLMmgWR0CdF5dtVJcxdX2UKGgGaAloD0MInznrU47Jsr+UhpRSlGgVSzJoFkdAnRdjlo11n3V9lChoBmgJaA9DCNb8+EuL+sC/lIaUUpRoFUsyaBZHQJ0Y2ouPFNt1fZQoaAZoCWgPQwjAd5s3TgrJv5SGlFKUaBVLMmgWR0CdGJ6mwaBJdX2UKGgGaAloD0MIbmsLz0vF17+UhpRSlGgVSzJoFkdAnRhofW+XaHV9lChoBmgJaA9DCNrnMcozL8+/lIaUUpRoFUsyaBZHQJ0YNJz1bq11fZQoaAZoCWgPQwhPkxlvK73Tv5SGlFKUaBVLMmgWR0CdGa4i5d4WdX2UKGgGaAloD0MId2UXDK650L+UhpRSlGgVSzJoFkdAnRlyLIgeR3V9lChoBmgJaA9DCGthFto5zcS/lIaUUpRoFUsyaBZHQJ0ZO/pMYdh1fZQoaAZoCWgPQwgJGF3eHK7Sv5SGlFKUaBVLMmgWR0CdGQgXuVopdX2UKGgGaAloD0MI06V/SSpT3r+UhpRSlGgVSzJoFkdAnRp8CkoF3nV9lChoBmgJaA9DCAtBDkqYacW/lIaUUpRoFUsyaBZHQJ0aQCMglnh1fZQoaAZoCWgPQwgKuyh64GPTv5SGlFKUaBVLMmgWR0CdGgnyd4FBdX2UKGgGaAloD0MIREyJJHoZ1b+UhpRSlGgVSzJoFkdAnRnWEoOQQ3V9lChoBmgJaA9DCAVNS6yMRsy/lIaUUpRoFUsyaBZHQJ0bS+ueSSx1fZQoaAZoCWgPQwgoKhvWVBbHv5SGlFKUaBVLMmgWR0CdGw/3FkxzdX2UKGgGaAloD0MIoBaDh2nf37+UhpRSlGgVSzJoFkdAnRrZv5xionV9lChoBmgJaA9DCGiz6nO1FcW/lIaUUpRoFUsyaBZHQJ0apeY2Kl51fZQoaAZoCWgPQwhMHHkgskjRv5SGlFKUaBVLMmgWR0CdHDSs8xKydX2UKGgGaAloD0MIJ8Eb0qjA3L+UhpRSlGgVSzJoFkdAnRv4wVTJhnV9lChoBmgJaA9DCAJnKVlOQtS/lIaUUpRoFUsyaBZHQJ0bwpBomHB1fZQoaAZoCWgPQwj+YrZkVQTlv5SGlFKUaBVLMmgWR0CdG49MsYl6dX2UKGgGaAloD0MI2PFfIAgQ47+UhpRSlGgVSzJoFkdAnR0kNvwVkHV9lChoBmgJaA9DCMh9q3Xicsy/lIaUUpRoFUsyaBZHQJ0c6EkB0ZF1fZQoaAZoCWgPQwimnZrLDYbcv5SGlFKUaBVLMmgWR0CdHLIRAbADdX2UKGgGaAloD0MIEaj+QSRDzL+UhpRSlGgVSzJoFkdAnRx+MAFPi3V9lChoBmgJaA9DCCXmWUkrvtS/lIaUUpRoFUsyaBZHQJ0d8te2NNt1fZQoaAZoCWgPQwj7yoP0FDnIv5SGlFKUaBVLMmgWR0CdHbbTc6/7dX2UKGgGaAloD0MIIsfWM4Rj27+UhpRSlGgVSzJoFkdAnR2Ao5PuX3V9lChoBmgJaA9DCNnMIamFkt6/lIaUUpRoFUsyaBZHQJ0dTMQmNR51fZQoaAZoCWgPQwh8nGnC9pPJv5SGlFKUaBVLMmgWR0CdHr6DXe3ydX2UKGgGaAloD0MICJEMObae2b+UhpRSlGgVSzJoFkdAnR6ClnAZbnV9lChoBmgJaA9DCMXIkjmWd8u/lIaUUpRoFUsyaBZHQJ0eTF72L511fZQoaAZoCWgPQwhntiv0wTLKv5SGlFKUaBVLMmgWR0CdHhh8YyfudX2UKGgGaAloD0MIV5OnrKbr17+UhpRSlGgVSzJoFkdAnR+K7iADrHV9lChoBmgJaA9DCNyEe2Xeqtq/lIaUUpRoFUsyaBZHQJ0fTvttygh1fZQoaAZoCWgPQwjEQUKUL2jZv5SGlFKUaBVLMmgWR0CdHxjFhodudX2UKGgGaAloD0MIaoZUUbzKxr+UhpRSlGgVSzJoFkdAnR7k78vVVnV9lChoBmgJaA9DCAVTzaylgNe/lIaUUpRoFUsyaBZHQJ0gWR1X/5t1fZQoaAZoCWgPQwhRLSKKyRvWv5SGlFKUaBVLMmgWR0CdIB0xM36zdX2UKGgGaAloD0MIOe6UDtb/0L+UhpRSlGgVSzJoFkdAnR/nA6+36XV9lChoBmgJaA9DCI0N3ewPlNC/lIaUUpRoFUsyaBZHQJ0fsytV7yB1fZQoaAZoCWgPQwhKl/4lqUzSv5SGlFKUaBVLMmgWR0CdISe18b71dX2UKGgGaAloD0MIStOgaB7AxL+UhpRSlGgVSzJoFkdAnSDrxy4nW3V9lChoBmgJaA9DCJhO6zao/dq/lIaUUpRoFUsyaBZHQJ0gtXtBv751fZQoaAZoCWgPQwj5MeauJeTBv5SGlFKUaBVLMmgWR0CdIIGlhw2mdX2UKGgGaAloD0MIKVsk7UYfxb+UhpRSlGgVSzJoFkdAnSH3a37UG3V9lChoBmgJaA9DCHiZYaOs39i/lIaUUpRoFUsyaBZHQJ0hu32EkB11fZQoaAZoCWgPQwjlt+hkqXXiv5SGlFKUaBVLMmgWR0CdIYVIZqEfdX2UKGgGaAloD0MI4s0avK/K4r+UhpRSlGgVSzJoFkdAnSFRTS9dvHV9lChoBmgJaA9DCAcoDTUKSeC/lIaUUpRoFUsyaBZHQJ0ixfG+9J11fZQoaAZoCWgPQwiN7bWg98bRv5SGlFKUaBVLMmgWR0CdIooHcDbKdX2UKGgGaAloD0MI9UwvMZbpyb+UhpRSlGgVSzJoFkdAnSJT2nKnvXV9lChoBmgJaA9DCO30g7pIoc6/lIaUUpRoFUsyaBZHQJ0iIAvL5h11fZQoaAZoCWgPQwh5k9+ik6XRv5SGlFKUaBVLMmgWR0CdI5KWcBludX2UKGgGaAloD0MI4Ec17PfE1r+UhpRSlGgVSzJoFkdAnSNWv4dp7HV9lChoBmgJaA9DCNDukGKARMe/lIaUUpRoFUsyaBZHQJ0jIJPZZjh1fZQoaAZoCWgPQwjFjPD2IATEv5SGlFKUaBVLMmgWR0CdIuzPrv9cdX2UKGgGaAloD0MIisxc4PJY3b+UhpRSlGgVSzJoFkdAnSRgU5+6RXV9lChoBmgJaA9DCLEUyVcCKdW/lIaUUpRoFUsyaBZHQJ0kJFy7wrl1fZQoaAZoCWgPQwhVbMzriEPGv5SGlFKUaBVLMmgWR0CdI+4tHxz8dX2UKGgGaAloD0MIh8CRQINNvb+UhpRSlGgVSzJoFkdAnSO6bWmP53V9lChoBmgJaA9DCPESnPpA8sy/lIaUUpRoFUsyaBZHQJ0lLlxOtXB1fZQoaAZoCWgPQwg1mfG20mvZv5SGlFKUaBVLMmgWR0CdJPJ4B3iadX2UKGgGaAloD0MIj/6Xa9ECwL+UhpRSlGgVSzJoFkdAnSS8Of/WD3V9lChoBmgJaA9DCFzLZDieT+C/lIaUUpRoFUsyaBZHQJ0kiFg2Ift1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.9, "gae_lambda": 0.98, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}