{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a29dbcf6e40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 100352, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728648207282355890, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAOZ+Nb7U8cs+kvsAvU95tb2HLss8lJoOOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGyew/xDst2MAWyUTa4DjAF0lEdAXPViVjZtenV9lChoBkfAcM+9IPK+z2gHTQMBaAhHQF0McXWOIZZ1fZQoaAZHQEXFG7z06HVoB03oA2gIR0BdaYtpVS4wdX2UKGgGR0A4gd+G47RwaAdN6ANoCEdAXh4ccU/OdHV9lChoBkdASzAu5BkZrGgHS8poCEdAXjEXwb2lEnV9lChoBkfAVMwSBbwBo2gHS9hoCEdAXkSRdQfp2XV9lChoBkfAYvXzMA3kxWgHS5xoCEdAXlLkJa7mMnV9lChoBkfAXDg9aEBbOmgHS8BoCEdAXmShysCDEnV9lChoBkfAIKaaCtihFmgHS6loCEdAXnR1IRRMvnV9lChoBkfAQGgysS00FmgHS7toCEdAXwL++/QBxXV9lChoBkfAZcUGyon8bmgHS7poCEdAXxnkWAPNFHV9lChoBkfAWxLIU8FINGgHTRUBaAhHQF89WQOnVG11fZQoaAZHQEvmNtqHoHNoB0u+aAhHQF9OZPVNHpd1fZQoaAZHwEnzSzgMtshoB00aAWgIR0BfZ47Rv3rVdX2UKGgGR8BWXPACW/rTaAdL7GgIR0BffYbn5i3HdX2UKGgGR8BlQttQ9A5aaAdL+2gIR0Bfk/w/gR9PdX2UKGgGR8BCCMxwhnrZaAdNGAFoCEdAX60x20Re1XV9lChoBkfAa7aDXe3x4WgHS+doCEdAX8N66asp5XV9lChoBkfAZRPNUwSJ0mgHS5poCEdAYBXzwtrbg3V9lChoBkdAO5q86FM7EGgHS/xoCEdAYCGh9LHuJHV9lChoBkdAQ06PluFYdWgHS9loCEdAYCthnanJk3V9lChoBkfAWU2wdKdxyWgHTUMBaAhHQGA50VJtix51fZQoaAZHwFTdxS5y2hJoB02AAWgIR0BgSt6Z6UqydX2UKGgGR0BU2OzD4xk/aAdN6ANoCEdAYKbj6N2ki3V9lChoBkfAPcLMHKOktWgHTSMBaAhHQGC0tqxkd3l1fZQoaAZHQEJA3jMmnfloB00VAWgIR0BgwQOx0MgEdX2UKGgGR8Bk7TOLR8c/aAdNQAFoCEdAYM/K/VRUFXV9lChoBkfAaKhEQXhwVGgHTQYBaAhHQGDnLLQokRl1fZQoaAZHwFQHPci4axZoB009AWgIR0BhCsvZh8YydX2UKGgGR8BM+C8WbgCPaAdNggFoCEdAYVTq7iADrHV9lChoBkdAQLUHjZL7GmgHS81oCEdAYV4rZJ04i3V9lChoBkfAU3JgDzRQamgHTaIBaAhHQGFxM2vStvJ1fZQoaAZHQFs2UIsyzoloB03oA2gIR0Bhn+yJKraNdX2UKGgGR8BujAoLG7z1aAdN7QFoCEdAYeJKvmoze3V9lChoBkfAQyWSpzcRDmgHTSIBaAhHQGHv25hBqsV1fZQoaAZHwF0kbe/Ho5hoB02lAWgIR0BiA5eb/ffodX2UKGgGR8BfyBrrPdEcaAdNfQFoCEdAYhT7xd6cAnV9lChoBkdAWKf5KvmozmgHTegDaAhHQGJvi0OVgQZ1fZQoaAZHQDblDw6QvHtoB02WAWgIR0BihoTj/+85dX2UKGgGR0BQyO4b0e2eaAdN6ANoCEdAYsTBIFvAGnV9lChoBkfAYxWi7kGRm2gHTZEBaAhHQGLXHZTQ3P11fZQoaAZHQDrstK7I1cdoB0v1aAhHQGMOhGQSzxB1fZQoaAZHwGdwk6tDD0loB00ZAWgIR0BjG4ydnTRZdX2UKGgGR8BHdfR3NcGDaAdNlQFoCEdAYy3iBoVVP3V9lChoBkdAajSbx3FDOWgHTXECaAhHQGNKkU0vXbx1fZQoaAZHwAmblijL0SRoB00OAWgIR0BjVvbZezD5dX2UKGgGR8BnPv20zCUHaAdL7GgIR0BjYXpOerdWdX2UKGgGR0BZTN9x6v7naAdN6ANoCEdAY7tStvGZNXV9lChoBkfAXnHVXmvGImgHTYUBaAhHQGPMtdZ7ojh1fZQoaAZHwB8SH/LkjopoB01WAWgIR0Bj3Ejqv/zbdX2UKGgGR8BRuwz544ZNaAdNbgFoCEdAY+yam4y44XV9lChoBkdAUgpSGahHsmgHTegDaAhHQGRbXgLqlgt1fZQoaAZHwEefP69CeEtoB00VAWgIR0BkaC6FuejEdX2UKGgGR8BPrWtuDSPVaAdNLwFoCEdAZHXhZyMkyHV9lChoBkfATE/oouwos2gHTTMBaAhHQGSD1Ed/8VJ1fZQoaAZHQFrN4N7SiM5oB03oA2gIR0Bk3re9Ba9sdX2UKGgGR0Bo/9VcUucuaAdN3QFoCEdAZPSGorFwUHV9lChoBkfAK4lVDKHO8mgHTQ4BaAhHQGUAkleF+NN1fZQoaAZHwBbmeUY8+zNoB01tAWgIR0BlEWe4Cp3pdX2UKGgGR0BSsmXb/Ot5aAdN6ANoCEdAZWznh86V+3V9lChoBkdAXUeCdz4k/2gHTegDaAhHQGWdd6Tnq3V1fZQoaAZHQFr/2aUiY9hoB03oA2gIR0BmI3lyR0U5dX2UKGgGR8Azqgc94eLfaAdNVwFoCEdAZjswevIOpnV9lChoBkfAXa6NkvsZ52gHTR8CaAhHQGZUI2wV0tB1fZQoaAZHwCAyCjDbah9oB00LAWgIR0BmYB8hLXcydX2UKGgGR8BZyxpUPxx2aAdNZwFoCEdAZpz1OCXhO3V9lChoBkfAYlMRAbADaGgHTfUBaAhHQGazpY1YQrd1fZQoaAZHwDI50DEFW4poB00fAmgIR0Bmy8y8BdUsdX2UKGgGR8BEIOmBOHnEaAdNBwFoCEdAZte2VE/jbXV9lChoBkfADKOd5IH1OGgHTTABaAhHQGbm3vphWo51fZQoaAZHwFbXQpF1B+poB03CAWgIR0BnLBeXzDoAdX2UKGgGR8BeXskIHC40aAdNagFoCEdAZz1Ip6QeWHV9lChoBkdAZleawUxmCmgHTegDaAhHQGdscDbJwKl1fZQoaAZHQGcH+m3vx6RoB02MAmgIR0Bny2HtWuHOdX2UKGgGR8BlhMb3oLXuaAdN1gJoCEdAZ+wjHGS6lXV9lChoBkdAXrMQpWmxdWgHTegDaAhHQGgaH3L3bmF1fZQoaAZHwEiq7eVLSNRoB00TAWgIR0BoU8pmVZ9vdX2UKGgGR8Ax0eCTUy57aAdNWQFoCEdAaGPdSEUTMHV9lChoBkdAQFyiItUXHmgHTegDaAhHQGiQ8a4tpVV1fZQoaAZHQFQTmOEM9bJoB03oA2gIR0Bo7yJj2BatdX2UKGgGR8BXQgr1/Ue/aAdNEAJoCEdAaQupG4I8hnV9lChoBkdAbOZDye7L+2gHTeECaAhHQGk4BePaL4x1fZQoaAZHQFPAolD4QBhoB03oA2gIR0BpnGw3YL9ddX2UKGgGR0BsUKN4qwyJaAdNDwJoCEdAabQryUcGT3V9lChoBkc/42mFajesP2gHTegDaAhHQGoOi3G4qgB1fZQoaAZHwAyKtHQQcxVoB03oA2gIR0BqO8cn3L3cdX2UKGgGR0Bs4xVAAyVOaAdN8wFoCEdAalJ850bLlnV9lChoBkdAPFztCzC1qmgHTegDaAhHQGqy8EV32VV1fZQoaAZHQGZNPjfek59oB02sAmgIR0Bq3JyCFsYVdX2UKGgGR0BrRIZ62OQyaAdNKwJoCEdAavtgb6xgRnV9lChoBkdAV6Lvrnkkr2gHTegDaAhHQGtV5vDP4VR1fZQoaAZHQG2J4+B6KLtoB018AmgIR0BrcnEn9ehPdX2UKGgGR0BwAolPacqfaAdNvQFoCEdAa4Z7Ikqto3V9lChoBkfARq0RDkU9IWgHTcoBaAhHQGvHar/82rJ1fZQoaAZHQGo6HgHeJpFoB00CAmgIR0Br3sc4o7V8dX2UKGgGR8BSEOqrBCUpaAdNsgFoCEdAa/KCEpRXOnV9lChoBkfAU/jgAIY3vWgHTTMCaAhHQGwML9ETg2t1fZQoaAZHQGfVNIK+i8FoB02XA2gIR0BsdDuYx+KCdX2UKGgGR8AW5tygf2boaAdNDwFoCEdAbIMBtDUmUnV9lChoBkdAYEyfEGZ/kWgHTbYCaAhHQGyiv+n62v11ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 490, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}