|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline |
|
|
|
|
|
model = None |
|
tokenizer = None |
|
nlp = None |
|
|
|
def init(): |
|
global model, tokenizer, nlp |
|
model_name_or_path = "." |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) |
|
nlp = pipeline("text2text-generation", model=model, tokenizer=tokenizer) |
|
|
|
def inference(payload): |
|
inputs = payload.get("inputs", "") |
|
if not inputs: |
|
return {"error": "No inputs provided"} |
|
|
|
|
|
outputs = nlp(inputs, max_length=256) |
|
return outputs |
|
|