File size: 20,429 Bytes
f3972ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "98165c88-8ead-4fae-9ea8-6b2e82996fc5",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "6\n",
      "num params encoder  50840\n",
      "num params  21496282\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "  0%|                                                    | 0/48 [00:00<?, ?it/s]/home/pma/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/parallel/parallel_apply.py:79: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n",
      "  with torch.cuda.device(device), torch.cuda.stream(stream), autocast(enabled=autocast_enabled):\n",
      "  0%|                                                    | 0/48 [00:22<?, ?it/s]\n"
     ]
    },
    {
     "ename": "AttributeError",
     "evalue": "Caught AttributeError in replica 0 on device 0.\nOriginal Traceback (most recent call last):\n  File \"/home/pma/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/parallel/parallel_apply.py\", line 83, in _worker\n    output = module(*input, **kwargs)\n             ^^^^^^^^^^^^^^^^^^^^^^^^\n  File \"/home/pma/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1553, in _wrapped_call_impl\n    return self._call_impl(*args, **kwargs)\n           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n  File \"/home/pma/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1562, in _call_impl\n    return forward_call(*args, **kwargs)\n           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n  File \"/home/pma/projects/frbnn_narrow/CNN/resnet_model.py\", line 106, in forward\n    return x, self.mask, self.value\n              ^^^^^^^^^\n  File \"/home/pma/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1729, in __getattr__\n    raise AttributeError(f\"'{type(self).__name__}' object has no attribute '{name}'\")\nAttributeError: 'ResNet' object has no attribute 'mask'\n",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[1], line 50\u001b[0m\n\u001b[1;32m     48\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m images, labels \u001b[38;5;129;01min\u001b[39;00m tqdm(testloader):\n\u001b[1;32m     49\u001b[0m     inputs, labels \u001b[38;5;241m=\u001b[39m images\u001b[38;5;241m.\u001b[39mto(device), labels\n\u001b[0;32m---> 50\u001b[0m     outputs \u001b[38;5;241m=\u001b[39m model(inputs, return_mask \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m     51\u001b[0m     _, predicted \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mmax(outputs, \u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m     52\u001b[0m     results[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124moutput\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mextend(outputs\u001b[38;5;241m.\u001b[39mcpu()\u001b[38;5;241m.\u001b[39mnumpy()\u001b[38;5;241m.\u001b[39mtolist())\n",
      "File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/modules/module.py:1553\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1551\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)  \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m   1552\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1553\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
      "File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/modules/module.py:1562\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1557\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1558\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1559\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m   1560\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1561\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m forward_call(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m   1564\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m   1565\u001b[0m     result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/parallel/data_parallel.py:186\u001b[0m, in \u001b[0;36mDataParallel.forward\u001b[0;34m(self, *inputs, **kwargs)\u001b[0m\n\u001b[1;32m    184\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodule(\u001b[38;5;241m*\u001b[39minputs[\u001b[38;5;241m0\u001b[39m], \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mmodule_kwargs[\u001b[38;5;241m0\u001b[39m])\n\u001b[1;32m    185\u001b[0m replicas \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mreplicate(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodule, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice_ids[:\u001b[38;5;28mlen\u001b[39m(inputs)])\n\u001b[0;32m--> 186\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mparallel_apply(replicas, inputs, module_kwargs)\n\u001b[1;32m    187\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgather(outputs, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput_device)\n",
      "File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/parallel/data_parallel.py:201\u001b[0m, in \u001b[0;36mDataParallel.parallel_apply\u001b[0;34m(self, replicas, inputs, kwargs)\u001b[0m\n\u001b[1;32m    200\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mparallel_apply\u001b[39m(\u001b[38;5;28mself\u001b[39m, replicas: Sequence[T], inputs: Sequence[Any], kwargs: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m List[Any]:\n\u001b[0;32m--> 201\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m parallel_apply(replicas, inputs, kwargs, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice_ids[:\u001b[38;5;28mlen\u001b[39m(replicas)])\n",
      "File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/parallel/parallel_apply.py:108\u001b[0m, in \u001b[0;36mparallel_apply\u001b[0;34m(modules, inputs, kwargs_tup, devices)\u001b[0m\n\u001b[1;32m    106\u001b[0m     output \u001b[38;5;241m=\u001b[39m results[i]\n\u001b[1;32m    107\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(output, ExceptionWrapper):\n\u001b[0;32m--> 108\u001b[0m         output\u001b[38;5;241m.\u001b[39mreraise()\n\u001b[1;32m    109\u001b[0m     outputs\u001b[38;5;241m.\u001b[39mappend(output)\n\u001b[1;32m    110\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m outputs\n",
      "File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/site-packages/torch/_utils.py:706\u001b[0m, in \u001b[0;36mExceptionWrapper.reraise\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    702\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m    703\u001b[0m     \u001b[38;5;66;03m# If the exception takes multiple arguments, don't try to\u001b[39;00m\n\u001b[1;32m    704\u001b[0m     \u001b[38;5;66;03m# instantiate since we don't know how to\u001b[39;00m\n\u001b[1;32m    705\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(msg) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m--> 706\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exception\n",
      "\u001b[0;31mAttributeError\u001b[0m: Caught AttributeError in replica 0 on device 0.\nOriginal Traceback (most recent call last):\n  File \"/home/pma/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/parallel/parallel_apply.py\", line 83, in _worker\n    output = module(*input, **kwargs)\n             ^^^^^^^^^^^^^^^^^^^^^^^^\n  File \"/home/pma/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1553, in _wrapped_call_impl\n    return self._call_impl(*args, **kwargs)\n           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n  File \"/home/pma/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1562, in _call_impl\n    return forward_call(*args, **kwargs)\n           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n  File \"/home/pma/projects/frbnn_narrow/CNN/resnet_model.py\", line 106, in forward\n    return x, self.mask, self.value\n              ^^^^^^^^^\n  File \"/home/pma/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1729, in __getattr__\n    raise AttributeError(f\"'{type(self).__name__}' object has no attribute '{name}'\")\nAttributeError: 'ResNet' object has no attribute 'mask'\n"
     ]
    }
   ],
   "source": [
    "from utils import CustomDataset, transform, preproc, Convert_ONNX\n",
    "from torch.utils.data import Dataset, DataLoader\n",
    "from utils import CustomDataset, TestingDataset, transform\n",
    "from tqdm import tqdm\n",
    "import torch\n",
    "import numpy as np\n",
    "from resnet_model import  ResidualBlock, ResNet\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.optim as optim\n",
    "from tqdm import tqdm \n",
    "import torch.nn.functional as F\n",
    "from torch.optim.lr_scheduler import ReduceLROnPlateau\n",
    "import pickle\n",
    "\n",
    "torch.manual_seed(1)\n",
    "# torch.manual_seed(42)\n",
    "\n",
    "\n",
    "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
    "num_gpus = torch.cuda.device_count()\n",
    "print(num_gpus)\n",
    "\n",
    "test_data_dir = '/mnt/buf1/pma/frbnn/test_ready'\n",
    "test_dataset = TestingDataset(test_data_dir, transform=transform)\n",
    "\n",
    "num_classes = 2\n",
    "testloader = DataLoader(test_dataset, batch_size=420, shuffle=True, num_workers=32)\n",
    "\n",
    "model = ResNet(24, ResidualBlock, [3, 4, 6, 3], num_classes=num_classes).to(device)\n",
    "model = nn.DataParallel(model)\n",
    "model = model.to(device)\n",
    "params = sum(p.numel() for p in model.parameters())\n",
    "print(\"num params \",params)\n",
    "\n",
    "model_1 = 'models/model-23-99.045.pt'\n",
    "# model_1 ='models/model-47-99.125.pt'\n",
    "model.load_state_dict(torch.load(model_1, weights_only=True))\n",
    "model = model.eval()\n",
    "\n",
    "# eval\n",
    "val_loss = 0.0\n",
    "correct_valid = 0\n",
    "total = 0\n",
    "results = {'output': [],'pred': [], 'true':[], 'freq':[], 'snr':[], 'dm':[], 'boxcar':[]}\n",
    "model.eval()\n",
    "with torch.no_grad():\n",
    "    for images, labels in tqdm(testloader):\n",
    "        inputs, labels = images.to(device), labels\n",
    "        outputs = model(inputs)\n",
    "        _, predicted = torch.max(outputs, 1)\n",
    "        results['output'].extend(outputs.cpu().numpy().tolist())\n",
    "        results['pred'].extend(predicted.cpu().numpy().tolist())\n",
    "        results['true'].extend(labels[0].cpu().numpy().tolist())\n",
    "        results['freq'].extend(labels[2].cpu().numpy().tolist())\n",
    "        results['dm'].extend(labels[1].cpu().numpy().tolist())\n",
    "        results['snr'].extend(labels[3].cpu().numpy().tolist())\n",
    "        results['boxcar'].extend(labels[4].cpu().numpy().tolist())\n",
    "        total += labels[0].size(0)\n",
    "        correct_valid += (predicted.cpu() == labels[0].cpu()).sum().item()\n",
    "# Calculate training accuracy after each epoch\n",
    "val_accuracy = correct_valid / total * 100.0\n",
    "print(\"===========================\")\n",
    "print('accuracy: ',  val_accuracy)\n",
    "print(\"===========================\")\n",
    "\n",
    "import pickle\n",
    "\n",
    "# Pickle the dictionary to a file\n",
    "with open('models/test_42.pkl', 'wb') as f:\n",
    "    pickle.dump(results, f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "64733667-75c3-4fd3-ab9f-62b85c5e27e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "from utils import CustomDataset, transform, preproc, Convert_ONNX\n",
    "from torch.utils.data import Dataset, DataLoader\n",
    "from utils import CustomDataset, TestingDataset, transform\n",
    "from tqdm import tqdm\n",
    "import torch\n",
    "import numpy as np\n",
    "from resnet_model_mask import  ResidualBlock, ResNet\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.optim as optim\n",
    "from tqdm import tqdm \n",
    "import torch.nn.functional as F\n",
    "from torch.optim.lr_scheduler import ReduceLROnPlateau\n",
    "import pickle\n",
    "\n",
    "torch.manual_seed(1)\n",
    "# torch.manual_seed(42)\n",
    "\n",
    "\n",
    "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
    "num_gpus = torch.cuda.device_count()\n",
    "print(num_gpus)\n",
    "\n",
    "test_data_dir = '/mnt/buf1/pma/frbnn/test_ready'\n",
    "test_dataset = TestingDataset(test_data_dir, transform=transform)\n",
    "\n",
    "num_classes = 2\n",
    "testloader = DataLoader(test_dataset, batch_size=420, shuffle=True, num_workers=32)\n",
    "\n",
    "model = ResNet(24, ResidualBlock, [3, 4, 6, 3], num_classes=num_classes).to(device)\n",
    "model = nn.DataParallel(model)\n",
    "model = model.to(device)\n",
    "params = sum(p.numel() for p in model.parameters())\n",
    "print(\"num params \",params)\n",
    "\n",
    "\n",
    "model_1 = 'models/model-14-98.005.pt'\n",
    "# model_1 ='models/model-47-99.125.pt'\n",
    "model.load_state_dict(torch.load(model_1, weights_only=True))\n",
    "model = model.eval()\n",
    "\n",
    "# eval\n",
    "val_loss = 0.0\n",
    "correct_valid = 0\n",
    "total = 0\n",
    "results = {'output': [],'pred': [], 'true':[], 'freq':[], 'snr':[], 'dm':[], 'boxcar':[]}\n",
    "model.eval()\n",
    "with torch.no_grad():\n",
    "    for images, labels in tqdm(testloader):\n",
    "        inputs, labels = images.to(device), labels\n",
    "        outputs = model(inputs)\n",
    "        _, predicted = torch.max(outputs, 1)\n",
    "        results['output'].extend(outputs.cpu().numpy().tolist())\n",
    "        results['pred'].extend(predicted.cpu().numpy().tolist())\n",
    "        results['true'].extend(labels[0].cpu().numpy().tolist())\n",
    "        results['freq'].extend(labels[2].cpu().numpy().tolist())\n",
    "        results['dm'].extend(labels[1].cpu().numpy().tolist())\n",
    "        results['snr'].extend(labels[3].cpu().numpy().tolist())\n",
    "        results['boxcar'].extend(labels[4].cpu().numpy().tolist())\n",
    "        total += labels[0].size(0)\n",
    "        correct_valid += (predicted.cpu() == labels[0].cpu()).sum().item()\n",
    "    \n",
    "# Calculate training accuracy after each epoch\n",
    "val_accuracy = correct_valid / total * 100.0\n",
    "print(\"===========================\")\n",
    "print('accuracy: ',  val_accuracy)\n",
    "print(\"===========================\")\n",
    "\n",
    "import pickle\n",
    "\n",
    "# Pickle the dictionary to a file\n",
    "with open('models/test_1.pkl', 'wb') as f:\n",
    "    pickle.dump(results, f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fe74ada8-43e4-4c73-b772-0ef18983345d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from utils import CustomDataset, transform, preproc, Convert_ONNX\n",
    "from torch.utils.data import Dataset, DataLoader\n",
    "from utils import CustomDataset, TestingDataset, transform\n",
    "from tqdm import tqdm\n",
    "import torch\n",
    "import numpy as np\n",
    "from resnet_model_mask import  ResidualBlock, ResNet\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.optim as optim\n",
    "from tqdm import tqdm \n",
    "import torch.nn.functional as F\n",
    "from torch.optim.lr_scheduler import ReduceLROnPlateau\n",
    "import pickle\n",
    "\n",
    "torch.manual_seed(1)\n",
    "# torch.manual_seed(42)\n",
    "\n",
    "\n",
    "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
    "num_gpus = torch.cuda.device_count()\n",
    "print(num_gpus)\n",
    "\n",
    "test_data_dir = '/mnt/buf1/pma/frbnn/test_ready'\n",
    "test_dataset = TestingDataset(test_data_dir, transform=transform)\n",
    "\n",
    "num_classes = 2\n",
    "testloader = DataLoader(test_dataset, batch_size=420, shuffle=True, num_workers=32)\n",
    "\n",
    "model = ResNet(24, ResidualBlock, [3, 4, 6, 3], num_classes=num_classes).to(device)\n",
    "model = nn.DataParallel(model)\n",
    "model = model.to(device)\n",
    "params = sum(p.numel() for p in model.parameters())\n",
    "print(\"num params \",params)\n",
    "\n",
    "\n",
    "model_1 = 'models/model-28-98.955.pt'\n",
    "# model_1 ='models/model-47-99.125.pt'\n",
    "model.load_state_dict(torch.load(model_1, weights_only=True))\n",
    "model = model.eval()\n",
    "\n",
    "# eval\n",
    "val_loss = 0.0\n",
    "correct_valid = 0\n",
    "total = 0\n",
    "results = {'output': [],'pred': [], 'true':[], 'freq':[], 'snr':[], 'dm':[], 'boxcar':[]}\n",
    "model.eval()\n",
    "with torch.no_grad():\n",
    "    for images, labels in tqdm(testloader):\n",
    "        inputs, labels = images.to(device), labels\n",
    "        outputs = model(inputs)\n",
    "        _, predicted = torch.max(outputs, 1)\n",
    "        results['output'].extend(outputs.cpu().numpy().tolist())\n",
    "        results['pred'].extend(predicted.cpu().numpy().tolist())\n",
    "        results['true'].extend(labels[0].cpu().numpy().tolist())\n",
    "        results['freq'].extend(labels[2].cpu().numpy().tolist())\n",
    "        results['dm'].extend(labels[1].cpu().numpy().tolist())\n",
    "        results['snr'].extend(labels[3].cpu().numpy().tolist())\n",
    "        results['boxcar'].extend(labels[4].cpu().numpy().tolist())\n",
    "        total += labels[0].size(0)\n",
    "        correct_valid += (predicted.cpu() == labels[0].cpu()).sum().item()\n",
    "    \n",
    "# Calculate training accuracy after each epoch\n",
    "val_accuracy = correct_valid / total * 100.0\n",
    "print(\"===========================\")\n",
    "print('accuracy: ',  val_accuracy)\n",
    "print(\"===========================\")\n",
    "\n",
    "import pickle\n",
    "\n",
    "# Pickle the dictionary to a file\n",
    "with open('models/test_7109.pkl', 'wb') as f:\n",
    "    pickle.dump(results, f)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}