File size: 23,945 Bytes
f3972ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "98165c88-8ead-4fae-9ea8-6b2e82996fc5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"6\n",
"num params encoder 50840\n",
"num params 21496282\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/48 [00:00<?, ?it/s]/home/pma/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/parallel/parallel_apply.py:79: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n",
" with torch.cuda.device(device), torch.cuda.stream(stream), autocast(enabled=autocast_enabled):\n",
" 8%|ββββ | 4/48 [02:22<25:11, 34.35s/it]Exception ignored in: <bound method IPythonKernel._clean_thread_parent_frames of <ipykernel.ipkernel.IPythonKernel object at 0x7efcbc3f67d0>>\n",
"Traceback (most recent call last):\n",
" File \"/home/pma/.conda/envs/frbnn/lib/python3.11/site-packages/ipykernel/ipkernel.py\", line 775, in _clean_thread_parent_frames\n",
" def _clean_thread_parent_frames(\n",
"\n",
"KeyboardInterrupt: \n",
" 10%|βββββ | 5/48 [02:53<24:56, 34.79s/it]\n"
]
},
{
"ename": "RuntimeError",
"evalue": "DataLoader worker (pid(s) 4158742, 4158790, 4158838, 4158886, 4158934, 4158982, 4159030, 4159078, 4159126, 4159174, 4159222, 4159270, 4159318, 4159366, 4159414, 4159462, 4159510, 4159558, 4159606, 4159654, 4159702, 4159750, 4159798, 4159846, 4159894, 4159942, 4159990, 4160038, 4160086, 4160134, 4160182, 4160230) exited unexpectedly",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/site-packages/torch/utils/data/dataloader.py:1131\u001b[0m, in \u001b[0;36m_MultiProcessingDataLoaderIter._try_get_data\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 1130\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1131\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_data_queue\u001b[38;5;241m.\u001b[39mget(timeout\u001b[38;5;241m=\u001b[39mtimeout)\n\u001b[1;32m 1132\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (\u001b[38;5;28;01mTrue\u001b[39;00m, data)\n",
"File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/multiprocessing/queues.py:122\u001b[0m, in \u001b[0;36mQueue.get\u001b[0;34m(self, block, timeout)\u001b[0m\n\u001b[1;32m 121\u001b[0m \u001b[38;5;66;03m# unserialize the data after having released the lock\u001b[39;00m\n\u001b[0;32m--> 122\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _ForkingPickler\u001b[38;5;241m.\u001b[39mloads(res)\n",
"File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/site-packages/torch/multiprocessing/reductions.py:496\u001b[0m, in \u001b[0;36mrebuild_storage_fd\u001b[0;34m(cls, df, size)\u001b[0m\n\u001b[1;32m 495\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrebuild_storage_fd\u001b[39m(\u001b[38;5;28mcls\u001b[39m, df, size):\n\u001b[0;32m--> 496\u001b[0m fd \u001b[38;5;241m=\u001b[39m df\u001b[38;5;241m.\u001b[39mdetach()\n\u001b[1;32m 497\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n",
"File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/multiprocessing/resource_sharer.py:57\u001b[0m, in \u001b[0;36mDupFd.detach\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m'''Get the fd. This should only be called once.'''\u001b[39;00m\n\u001b[0;32m---> 57\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _resource_sharer\u001b[38;5;241m.\u001b[39mget_connection(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_id) \u001b[38;5;28;01mas\u001b[39;00m conn:\n\u001b[1;32m 58\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m reduction\u001b[38;5;241m.\u001b[39mrecv_handle(conn)\n",
"File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/multiprocessing/resource_sharer.py:86\u001b[0m, in \u001b[0;36m_ResourceSharer.get_connection\u001b[0;34m(ident)\u001b[0m\n\u001b[1;32m 85\u001b[0m address, key \u001b[38;5;241m=\u001b[39m ident\n\u001b[0;32m---> 86\u001b[0m c \u001b[38;5;241m=\u001b[39m Client(address, authkey\u001b[38;5;241m=\u001b[39mprocess\u001b[38;5;241m.\u001b[39mcurrent_process()\u001b[38;5;241m.\u001b[39mauthkey)\n\u001b[1;32m 87\u001b[0m c\u001b[38;5;241m.\u001b[39msend((key, os\u001b[38;5;241m.\u001b[39mgetpid()))\n",
"File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/multiprocessing/connection.py:519\u001b[0m, in \u001b[0;36mClient\u001b[0;34m(address, family, authkey)\u001b[0m\n\u001b[1;32m 518\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 519\u001b[0m c \u001b[38;5;241m=\u001b[39m SocketClient(address)\n\u001b[1;32m 521\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m authkey \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(authkey, \u001b[38;5;28mbytes\u001b[39m):\n",
"File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/multiprocessing/connection.py:647\u001b[0m, in \u001b[0;36mSocketClient\u001b[0;34m(address)\u001b[0m\n\u001b[1;32m 646\u001b[0m s\u001b[38;5;241m.\u001b[39msetblocking(\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m--> 647\u001b[0m s\u001b[38;5;241m.\u001b[39mconnect(address)\n\u001b[1;32m 648\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m Connection(s\u001b[38;5;241m.\u001b[39mdetach())\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory",
"\nThe above exception was the direct cause of the following exception:\n",
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[1], line 48\u001b[0m\n\u001b[1;32m 46\u001b[0m model\u001b[38;5;241m.\u001b[39meval()\n\u001b[1;32m 47\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mno_grad():\n\u001b[0;32m---> 48\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m images, labels \u001b[38;5;129;01min\u001b[39;00m tqdm(testloader):\n\u001b[1;32m 49\u001b[0m inputs, labels \u001b[38;5;241m=\u001b[39m images\u001b[38;5;241m.\u001b[39mto(device), labels\n\u001b[1;32m 50\u001b[0m outputs \u001b[38;5;241m=\u001b[39m model(inputs, return_mask \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m)\n",
"File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/site-packages/tqdm/std.py:1181\u001b[0m, in \u001b[0;36mtqdm.__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1178\u001b[0m time \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_time\n\u001b[1;32m 1180\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1181\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m iterable:\n\u001b[1;32m 1182\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m obj\n\u001b[1;32m 1183\u001b[0m \u001b[38;5;66;03m# Update and possibly print the progressbar.\u001b[39;00m\n\u001b[1;32m 1184\u001b[0m \u001b[38;5;66;03m# Note: does not call self.update(1) for speed optimisation.\u001b[39;00m\n",
"File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/site-packages/torch/utils/data/dataloader.py:630\u001b[0m, in \u001b[0;36m_BaseDataLoaderIter.__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 627\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sampler_iter \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 628\u001b[0m \u001b[38;5;66;03m# TODO(https://github.com/pytorch/pytorch/issues/76750)\u001b[39;00m\n\u001b[1;32m 629\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reset() \u001b[38;5;66;03m# type: ignore[call-arg]\u001b[39;00m\n\u001b[0;32m--> 630\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_next_data()\n\u001b[1;32m 631\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_yielded \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 632\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_dataset_kind \u001b[38;5;241m==\u001b[39m _DatasetKind\u001b[38;5;241m.\u001b[39mIterable \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 633\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_IterableDataset_len_called \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 634\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_yielded \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_IterableDataset_len_called:\n",
"File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/site-packages/torch/utils/data/dataloader.py:1327\u001b[0m, in \u001b[0;36m_MultiProcessingDataLoaderIter._next_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1324\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_process_data(data)\n\u001b[1;32m 1326\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_shutdown \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tasks_outstanding \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[0;32m-> 1327\u001b[0m idx, data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_get_data()\n\u001b[1;32m 1328\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tasks_outstanding \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 1329\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_dataset_kind \u001b[38;5;241m==\u001b[39m _DatasetKind\u001b[38;5;241m.\u001b[39mIterable:\n\u001b[1;32m 1330\u001b[0m \u001b[38;5;66;03m# Check for _IterableDatasetStopIteration\u001b[39;00m\n",
"File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/site-packages/torch/utils/data/dataloader.py:1293\u001b[0m, in \u001b[0;36m_MultiProcessingDataLoaderIter._get_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1289\u001b[0m \u001b[38;5;66;03m# In this case, `self._data_queue` is a `queue.Queue`,. But we don't\u001b[39;00m\n\u001b[1;32m 1290\u001b[0m \u001b[38;5;66;03m# need to call `.task_done()` because we don't use `.join()`.\u001b[39;00m\n\u001b[1;32m 1291\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1292\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m-> 1293\u001b[0m success, data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_try_get_data()\n\u001b[1;32m 1294\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m success:\n\u001b[1;32m 1295\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m data\n",
"File \u001b[0;32m~/.conda/envs/frbnn/lib/python3.11/site-packages/torch/utils/data/dataloader.py:1144\u001b[0m, in \u001b[0;36m_MultiProcessingDataLoaderIter._try_get_data\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 1142\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(failed_workers) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 1143\u001b[0m pids_str \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(w\u001b[38;5;241m.\u001b[39mpid) \u001b[38;5;28;01mfor\u001b[39;00m w \u001b[38;5;129;01min\u001b[39;00m failed_workers)\n\u001b[0;32m-> 1144\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mDataLoader worker (pid(s) \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpids_str\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m) exited unexpectedly\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[1;32m 1145\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(e, queue\u001b[38;5;241m.\u001b[39mEmpty):\n\u001b[1;32m 1146\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (\u001b[38;5;28;01mFalse\u001b[39;00m, \u001b[38;5;28;01mNone\u001b[39;00m)\n",
"\u001b[0;31mRuntimeError\u001b[0m: DataLoader worker (pid(s) 4158742, 4158790, 4158838, 4158886, 4158934, 4158982, 4159030, 4159078, 4159126, 4159174, 4159222, 4159270, 4159318, 4159366, 4159414, 4159462, 4159510, 4159558, 4159606, 4159654, 4159702, 4159750, 4159798, 4159846, 4159894, 4159942, 4159990, 4160038, 4160086, 4160134, 4160182, 4160230) exited unexpectedly"
]
}
],
"source": [
"from utils import CustomDataset, transform, preproc, Convert_ONNX\n",
"from torch.utils.data import Dataset, DataLoader\n",
"from utils import CustomDataset, TestingDataset, transform\n",
"from tqdm import tqdm\n",
"import torch\n",
"import numpy as np\n",
"from resnet_model_mask import ResidualBlock, ResNet\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from tqdm import tqdm \n",
"import torch.nn.functional as F\n",
"from torch.optim.lr_scheduler import ReduceLROnPlateau\n",
"import pickle\n",
"\n",
"torch.manual_seed(1)\n",
"# torch.manual_seed(42)\n",
"\n",
"\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"num_gpus = torch.cuda.device_count()\n",
"print(num_gpus)\n",
"\n",
"test_data_dir = '/mnt/buf1/pma/frbnn/test_ready'\n",
"test_dataset = TestingDataset(test_data_dir, transform=transform)\n",
"\n",
"num_classes = 2\n",
"testloader = DataLoader(test_dataset, batch_size=420, shuffle=True, num_workers=32)\n",
"\n",
"model = ResNet(24, ResidualBlock, [3, 4, 6, 3], num_classes=num_classes).to(device)\n",
"model = nn.DataParallel(model)\n",
"model = model.to(device)\n",
"params = sum(p.numel() for p in model.parameters())\n",
"print(\"num params \",params)\n",
"\n",
"model_1 = 'models_mask/model-43-99.235_42.pt'\n",
"# model_1 ='models/model-47-99.125.pt'\n",
"model.load_state_dict(torch.load(model_1, weights_only=True))\n",
"model = model.eval()\n",
"\n",
"# eval\n",
"val_loss = 0.0\n",
"correct_valid = 0\n",
"total = 0\n",
"results = {'output': [],'pred': [], 'true':[], 'freq':[], 'snr':[], 'dm':[], 'boxcar':[]}\n",
"model.eval()\n",
"with torch.no_grad():\n",
" for images, labels in tqdm(testloader):\n",
" inputs, labels = images.to(device), labels\n",
" outputs = model(inputs, return_mask = True)\n",
" _, predicted = torch.max(outputs, 1)\n",
" results['output'].extend(outputs.cpu().numpy().tolist())\n",
" results['pred'].extend(predicted.cpu().numpy().tolist())\n",
" results['true'].extend(labels[0].cpu().numpy().tolist())\n",
" results['freq'].extend(labels[2].cpu().numpy().tolist())\n",
" results['dm'].extend(labels[1].cpu().numpy().tolist())\n",
" results['snr'].extend(labels[3].cpu().numpy().tolist())\n",
" results['boxcar'].extend(labels[4].cpu().numpy().tolist())\n",
" total += labels[0].size(0)\n",
" correct_valid += (predicted.cpu() == labels[0].cpu()).sum().item()\n",
" \n",
"# Calculate training accuracy after each epoch\n",
"val_accuracy = correct_valid / total * 100.0\n",
"print(\"===========================\")\n",
"print('accuracy: ', val_accuracy)\n",
"print(\"===========================\")\n",
"\n",
"import pickle\n",
"\n",
"# Pickle the dictionary to a file\n",
"with open('models_mask/test_42.pkl', 'wb') as f:\n",
" pickle.dump(results, f)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64733667-75c3-4fd3-ab9f-62b85c5e27e3",
"metadata": {},
"outputs": [],
"source": [
"from utils import CustomDataset, transform, preproc, Convert_ONNX\n",
"from torch.utils.data import Dataset, DataLoader\n",
"from utils import CustomDataset, TestingDataset, transform\n",
"from tqdm import tqdm\n",
"import torch\n",
"import numpy as np\n",
"from resnet_model_mask import ResidualBlock, ResNet\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from tqdm import tqdm \n",
"import torch.nn.functional as F\n",
"from torch.optim.lr_scheduler import ReduceLROnPlateau\n",
"import pickle\n",
"\n",
"torch.manual_seed(1)\n",
"# torch.manual_seed(42)\n",
"\n",
"\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"num_gpus = torch.cuda.device_count()\n",
"print(num_gpus)\n",
"\n",
"test_data_dir = '/mnt/buf1/pma/frbnn/test_ready'\n",
"test_dataset = TestingDataset(test_data_dir, transform=transform)\n",
"\n",
"num_classes = 2\n",
"testloader = DataLoader(test_dataset, batch_size=420, shuffle=True, num_workers=32)\n",
"\n",
"model = ResNet(24, ResidualBlock, [3, 4, 6, 3], num_classes=num_classes).to(device)\n",
"model = nn.DataParallel(model)\n",
"model = model.to(device)\n",
"params = sum(p.numel() for p in model.parameters())\n",
"print(\"num params \",params)\n",
"\n",
"\n",
"model_1 = 'models_mask/model-36-99.11999999999999_1.pt'\n",
"# model_1 ='models/model-47-99.125.pt'\n",
"model.load_state_dict(torch.load(model_1, weights_only=True))\n",
"model = model.eval()\n",
"\n",
"# eval\n",
"val_loss = 0.0\n",
"correct_valid = 0\n",
"total = 0\n",
"results = {'output': [],'pred': [], 'true':[], 'freq':[], 'snr':[], 'dm':[], 'boxcar':[]}\n",
"model.eval()\n",
"with torch.no_grad():\n",
" for images, labels in tqdm(testloader):\n",
" inputs, labels = images.to(device), labels\n",
" outputs = model(inputs, return_mask = True)\n",
" _, predicted = torch.max(outputs, 1)\n",
" results['output'].extend(outputs.cpu().numpy().tolist())\n",
" results['pred'].extend(predicted.cpu().numpy().tolist())\n",
" results['true'].extend(labels[0].cpu().numpy().tolist())\n",
" results['freq'].extend(labels[2].cpu().numpy().tolist())\n",
" results['dm'].extend(labels[1].cpu().numpy().tolist())\n",
" results['snr'].extend(labels[3].cpu().numpy().tolist())\n",
" results['boxcar'].extend(labels[4].cpu().numpy().tolist())\n",
" total += labels[0].size(0)\n",
" correct_valid += (predicted.cpu() == labels[0].cpu()).sum().item()\n",
" \n",
" \n",
"# Calculate training accuracy after each epoch\n",
"val_accuracy = correct_valid / total * 100.0\n",
"print(\"===========================\")\n",
"print('accuracy: ', val_accuracy)\n",
"print(\"===========================\")\n",
"\n",
"import pickle\n",
"\n",
"# Pickle the dictionary to a file\n",
"with open('models_mask/test_1.pkl', 'wb') as f:\n",
" pickle.dump(results, f)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fe74ada8-43e4-4c73-b772-0ef18983345d",
"metadata": {},
"outputs": [],
"source": [
"from utils import CustomDataset, transform, preproc, Convert_ONNX\n",
"from torch.utils.data import Dataset, DataLoader\n",
"from utils import CustomDataset, TestingDataset, transform\n",
"from tqdm import tqdm\n",
"import torch\n",
"import numpy as np\n",
"from resnet_model_mask import ResidualBlock, ResNet\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from tqdm import tqdm \n",
"import torch.nn.functional as F\n",
"from torch.optim.lr_scheduler import ReduceLROnPlateau\n",
"import pickle\n",
"\n",
"torch.manual_seed(1)\n",
"# torch.manual_seed(42)\n",
"\n",
"\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"num_gpus = torch.cuda.device_count()\n",
"print(num_gpus)\n",
"\n",
"test_data_dir = '/mnt/buf1/pma/frbnn/test_ready'\n",
"test_dataset = TestingDataset(test_data_dir, transform=transform)\n",
"\n",
"num_classes = 2\n",
"testloader = DataLoader(test_dataset, batch_size=420, shuffle=True, num_workers=32)\n",
"\n",
"model = ResNet(24, ResidualBlock, [3, 4, 6, 3], num_classes=num_classes).to(device)\n",
"model = nn.DataParallel(model)\n",
"model = model.to(device)\n",
"params = sum(p.numel() for p in model.parameters())\n",
"print(\"num params \",params)\n",
"\n",
"\n",
"model_1 = 'models_mask/model-26-99.13_7109.pt'\n",
"# model_1 ='models/model-47-99.125.pt'\n",
"model.load_state_dict(torch.load(model_1, weights_only=True))\n",
"model = model.eval()\n",
"\n",
"# eval\n",
"val_loss = 0.0\n",
"correct_valid = 0\n",
"total = 0\n",
"results = {'output': [],'pred': [], 'true':[], 'freq':[], 'snr':[], 'dm':[], 'boxcar':[]}\n",
"model.eval()\n",
"with torch.no_grad():\n",
" for images, labels in tqdm(testloader):\n",
" inputs, labels = images.to(device), labels\n",
" outputs = model(inputs, return_mask = True)\n",
" _, predicted = torch.max(outputs, 1)\n",
" results['output'].extend(outputs.cpu().numpy().tolist())\n",
" results['pred'].extend(predicted.cpu().numpy().tolist())\n",
" results['true'].extend(labels[0].cpu().numpy().tolist())\n",
" results['freq'].extend(labels[2].cpu().numpy().tolist())\n",
" results['dm'].extend(labels[1].cpu().numpy().tolist())\n",
" results['snr'].extend(labels[3].cpu().numpy().tolist())\n",
" results['boxcar'].extend(labels[4].cpu().numpy().tolist())\n",
" total += labels[0].size(0)\n",
" correct_valid += (predicted.cpu() == labels[0].cpu()).sum().item()\n",
" \n",
" \n",
"# Calculate training accuracy after each epoch\n",
"val_accuracy = correct_valid / total * 100.0\n",
"print(\"===========================\")\n",
"print('accuracy: ', val_accuracy)\n",
"print(\"===========================\")\n",
"\n",
"import pickle\n",
"\n",
"# Pickle the dictionary to a file\n",
"with open('models_mask/test_7109.pkl', 'wb') as f:\n",
" pickle.dump(results, f)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|