File size: 11,662 Bytes
f3972ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "851f001a-3882-42cf-8e45-1bb7c4193d20",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"6\n",
"num params encoder 50840\n",
"num params 21496282\n"
]
}
],
"source": [
"from utils import CustomDataset, transform, preproc, Convert_ONNX\n",
"from torch.utils.data import Dataset, DataLoader\n",
"import torch\n",
"import numpy as np\n",
"from resnet_model_mask import ResidualBlock, ResNet\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from tqdm import tqdm \n",
"import torch.nn.functional as F\n",
"from torch.optim.lr_scheduler import ReduceLROnPlateau\n",
"import pickle\n",
"\n",
"torch.manual_seed(1)\n",
"# torch.manual_seed(42)\n",
"\n",
"\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"num_gpus = torch.cuda.device_count()\n",
"print(num_gpus)\n",
"\n",
"# Create custom dataset instance\n",
"# Create custom dataset instance\n",
"data_dir = '/mnt/buf0/pma/frbnn/train_ready'\n",
"dataset = CustomDataset(data_dir, transform=transform)\n",
"valid_data_dir = '/mnt/buf0/pma/frbnn/valid_ready'\n",
"valid_dataset = CustomDataset(valid_data_dir, transform=transform)\n",
"\n",
"\n",
"num_classes = 2\n",
"trainloader = DataLoader(dataset, batch_size=420, shuffle=True, num_workers=32)\n",
"\n",
"model = ResNet(24, ResidualBlock, [3, 4, 6, 3], num_classes=num_classes).to(device)\n",
"model = nn.DataParallel(model)\n",
"model = model.to(device)\n",
"params = sum(p.numel() for p in model.parameters())\n",
"print(\"num params \",params)\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "676a6ffa-5bed-403d-ba03-627f14b36de2",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/477 [00:00<?, ?batch/s]/home/pma/.conda/envs/frbnn/lib/python3.11/site-packages/torch/nn/parallel/parallel_apply.py:79: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n",
" with torch.cuda.device(device), torch.cuda.stream(stream), autocast(enabled=autocast_enabled):\n",
"100%|ββββββββββββββββββββββββββββββββββββββ| 477/477 [08:57<00:00, 1.13s/batch]\n"
]
},
{
"ename": "NameError",
"evalue": "name 'validloader' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[2], line 29\u001b[0m\n\u001b[1;32m 27\u001b[0m model\u001b[38;5;241m.\u001b[39meval()\n\u001b[1;32m 28\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mno_grad():\n\u001b[0;32m---> 29\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m images, labels \u001b[38;5;129;01min\u001b[39;00m validloader:\n\u001b[1;32m 30\u001b[0m inputs, labels \u001b[38;5;241m=\u001b[39m images\u001b[38;5;241m.\u001b[39mto(device), labels\u001b[38;5;241m.\u001b[39mto(device)\u001b[38;5;241m.\u001b[39mfloat()\n\u001b[1;32m 31\u001b[0m optimizer\u001b[38;5;241m.\u001b[39mzero_grad()\n",
"\u001b[0;31mNameError\u001b[0m: name 'validloader' is not defined"
]
}
],
"source": [
"criterion = nn.CrossEntropyLoss(weight = torch.tensor([1,1]).to(device))\n",
"optimizer = optim.Adam(model.parameters(), lr=0.0001)\n",
"scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=10)\n",
"\n",
"for epoch in range(5):\n",
" running_loss = 0.0\n",
" correct_train = 0\n",
" total_train = 0\n",
" with tqdm(trainloader, unit=\"batch\") as tepoch:\n",
" model.train()\n",
" for i, (images, labels) in enumerate(tepoch):\n",
" inputs, labels = images.to(device), labels.to(device).float()\n",
" optimizer.zero_grad()\n",
" outputs = model(inputs, return_mask=False).to(device)\n",
" new_label = F.one_hot(labels.type(torch.int64),num_classes=2).type(torch.float32).to(device)\n",
" loss = criterion(outputs, new_label)\n",
" loss.backward()\n",
" optimizer.step()\n",
" running_loss += loss.item()\n",
" # Calculate training accuracy\n",
" _, predicted = torch.max(outputs.data, 1)\n",
" total_train += labels.size(0)\n",
" correct_train += (predicted == labels).sum().item() \n",
" val_loss = 0.0\n",
" correct_valid = 0\n",
" total = 0\n",
" model.eval()\n",
" with torch.no_grad():\n",
" for images, labels in validloader:\n",
" inputs, labels = images.to(device), labels.to(device).float()\n",
" optimizer.zero_grad()\n",
" outputs = model(inputs, return_mask=False)\n",
" new_label = F.one_hot(labels.type(torch.int64),num_classes=2).type(torch.float32)\n",
" loss = criterion(outputs, new_label)\n",
" val_loss += loss.item()\n",
" _, predicted = torch.max(outputs, 1)\n",
" total += labels.size(0)\n",
" correct_valid += (predicted == labels).sum().item()\n",
" scheduler.step(val_loss)\n",
" # Calculate training accuracy after each epoch\n",
" train_accuracy = 100 * correct_train / total_train\n",
" val_accuracy = correct_valid / total * 100.0\n",
"\n",
"\n",
" print(\"===========================\")\n",
" print('accuracy: ', epoch, train_accuracy, val_accuracy)\n",
" print('learning rate: ', scheduler.get_last_lr())\n",
" print(\"===========================\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3faa4a11-89fb-4556-ae87-3645a47fa00d",
"metadata": {},
"outputs": [],
"source": [
"train_accuracy = 100 * correct_train / total_train\n",
"print('accuracy: ', epoch, train_accuracy)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e586c4d2-a7f4-4f14-81fc-4f84ffac52b3",
"metadata": {},
"outputs": [],
"source": [
"import sigpyproc.readers as r\n",
"import cv2\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from scipy.special import softmax\n",
"%matplotlib inline\n",
"path = '/mnt/primary/ata/projects/p051/fil_60565_59210_9756774_J0534+2200_0001/LoB.C0928/fil_60565_59210_9756774_J0534+2200_0001-beam0000.fil'\n",
"# path = '/mnt/primary/ata/projects/p051/fil_60564_62428_4679748_J0332+5434_0001/LoB.C0928/fil_60564_62428_4679748_J0332+5434_0001-beam0000.fil'\n",
"\n",
"# Get some metadata\n",
"\n",
"# Open the filterbank file\n",
"fil = r.FilReader(path)\n",
"header = fil.header\n",
"print(\"Header:\", header)\n",
"n=100\n",
"li = [ 7257608, 7324207, 10393163, 10641071, 11130537, 11085081,\n",
" 11419145, 11964112, 12329364, 13047181]\n",
"for el in li:\n",
" data = torch.tensor(fil.read_block(el-1024, 2048)).cuda()\n",
" print(data.shape)\n",
" out = model(transform(torch.tensor(data).cuda())[None])\n",
" print(softmax(out.detach().cpu().numpy(), axis=1))\n",
" plt.figure(figsize=(10,10))\n",
" plt.imshow(data.cpu().numpy(), aspect = 10)\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "609e5564-f14f-4bd1-b604-68e7e7d42834",
"metadata": {},
"outputs": [],
"source": [
"triggers = []\n",
"counter = 0\n",
"with torch.no_grad():\n",
" for i in range(2048,10201921, 2048 ):\n",
" data = torch.tensor(fil.read_block(i-1024, 2048)).cuda()\n",
" # Shuffle the tensor using the random indices\n",
" out = model(transform(torch.tensor(data).cuda())[None])\n",
" triggers.append(softmax(out.detach().cpu().numpy(), axis=1))\n",
" counter += 1\n",
" if counter > 1000:\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "08ee6dcf-cb30-4490-8624-4e52552fdf39",
"metadata": {},
"outputs": [],
"source": [
"print(triggers[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8c56c6f5-5a0b-4854-8a94-066a9baf4cfc",
"metadata": {},
"outputs": [],
"source": [
"stack = np.stack(triggers)\n",
"positives = stack[:,0,1]\n",
"num_pos = np.where(positives > 0.5)[0].shape[0]\n",
"print(num_pos)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "eb1d1591-8855-4989-bf12-c8a9cdbf2a4d",
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"\n",
"# Path to your pickle file\n",
"file_path = \"../dataset_generator/dir.pkl\"\n",
"\n",
"# Open and load the pickle file\n",
"with open(file_path, \"rb\") as file: # Use \"rb\" mode for reading binary files\n",
" data = pickle.load(file)\n",
"\n",
"# Print the contents of the file\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "46f61d7e-55fa-44fe-be94-d4ddb3c576f9",
"metadata": {},
"outputs": [],
"source": [
"import sigpyproc.readers as r\n",
"import cv2\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from scipy.special import softmax\n",
"%matplotlib inline\n",
"path = data[0]\n",
"model.eval()\n",
"\n",
"fil = r.FilReader(path)\n",
"header = fil.header\n",
"print(\"Header:\", header)\n",
"n=100\n",
"\n",
"\n",
"triggers = []\n",
"counter = 0\n",
"for i in range(2048,10201921, 2048):\n",
" data = torch.tensor(fil.read_block(i-1024, 2048)).cuda()\n",
" # Shuffle the tensor using the random indices\n",
" out = model(transform(torch.tensor(data).cuda())[None])\n",
" triggers.append(softmax(out.detach().cpu().numpy(), axis=1))\n",
" counter += 1\n",
" if counter > 1000:\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "413d402e-2ce3-49fc-bbd4-a3cf1cc92388",
"metadata": {},
"outputs": [],
"source": [
"print(triggers[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5c039dee-1b9b-4664-b42a-a79d780f37f1",
"metadata": {},
"outputs": [],
"source": [
"stack = np.stack(triggers)\n",
"positives = stack[:,0,1]\n",
"num_pos = np.where(positives > 0.5)[0].shape[0]\n",
"print(num_pos)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|