File size: 11,329 Bytes
f3972ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
from utils import CustomDataset, transform, Convert_ONNX
from torch.utils.data import Dataset, DataLoader
import torch
import numpy as np
from resnet_model_mask import  ResidualBlock, ResNet
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm 
import torch.nn.functional as F
from torch.optim.lr_scheduler import ReduceLROnPlateau
import pickle

torch.manual_seed(1)
# torch.manual_seed(42)


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
num_gpus = torch.cuda.device_count()
print(num_gpus)

# Create custom dataset instance
data_dir = '/mnt/buf0/pma/frbnn/train_ready'
dataset = CustomDataset(data_dir, transform=transform)
valid_data_dir = '/mnt/buf0/pma/frbnn/valid_ready'
valid_dataset = CustomDataset(valid_data_dir, transform=transform)


num_classes = 2
trainloader = DataLoader(dataset, batch_size=420, shuffle=True, num_workers=32)

model = ResNet(24, ResidualBlock, [3, 4, 6, 3], num_classes=num_classes).to(device)
model = nn.DataParallel(model)
model = model.to(device)
params = sum(p.numel() for p in model.parameters())
print("num params ",params)


model_path = 'models/model-47-99.125.pt'

model.load_state_dict(torch.load(model_path, weights_only=True))
model = model.eval()

# Collect all plotting data
import sigpyproc.readers as r
import cv2
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import softmax
from tqdm import tqdm

all_detections = []

# first file snr 180
print("Processing first file (SNR 180)...")
fil = r.FilReader('/mnt/primary/ata/results/p031/FRB20240114a_spliced/fil_60398_67123_110077819_frb20240114a_0001/LoC.C0736/decimated.fil')
header = fil.header
print(header)

triggers = []
counter = 0
for i in tqdm(range(27085468,27397968, 2048)):
    data = torch.tensor(fil.read_block(i-1024, 2048)).cuda()
    out = model(transform(torch.tensor(data).cuda())[None])
    out = softmax(out.detach().cpu().numpy(), axis=1)
    triggers.append(out)
    counter += 1
    if out[0, 1]>0.9982:
        key = data.cpu().numpy()
        all_detections.append({
            'data': key,
            'confidence': out[0, 1],
            'file_index': i,
            'file_name': 'fil_60398_67123_110077819_frb20240114a_0001 (SNR 180)',
            'normalization': 'raw',
            'header': header
        })
stack = np.stack(triggers)
positives = stack[:,0,1]
num_pos = np.where(positives > 0.9988)[0].shape[0]
print(f"File 1 detections: {num_pos}")

# second file snr 60
print("Processing second file (SNR 60)...")
fil = r.FilReader('/mnt/primary/ata/results/p031/FRB20240114a_spliced/fil_60428_58167_24730285_frb20240114a_0001/LoC.C1504/decimated.fil')
header = fil.header
print(header)

triggers = []
counter = 0
for i in tqdm(range(8148984,8461484, 2048)):
    data = torch.tensor(fil.read_block(i-1024, 2048)).cuda()
    out = model(transform(torch.tensor(data).cuda())[None])
    out = softmax(out.detach().cpu().numpy(), axis=1)
    triggers.append(out)
    counter += 1
    if out[0, 1]>0.9988:
        key = data.cpu().numpy()
        result = np.repeat(np.mean(data.cpu().numpy(), axis = 1)[:,None], 2048, axis=1) 
        all_detections.append({
            'data': key/result,
            'confidence': out[0, 1],
            'file_index': i,
            'file_name': 'fil_60428_58167_24730285_frb20240114a_0001 (SNR 60)',
            'normalization': 'normalized',
            'header': header
        })
stack = np.stack(triggers)
positives = stack[:,0,1]
num_pos = np.where(positives > 0.9988)[0].shape[0]
print(f"File 2 detections: {num_pos}")

# third file
print("Processing third file...")
fil = r.FilReader('/mnt/primary/ata/results/p031/FRB20240114a_spliced/fil_60427_42703_18513000_frb20240114a_0001/LoC.C1504/decimated.fil')
header = fil.header
print(header)

triggers = []
counter = 0
for i in tqdm(range(20343125,20655625, 2048)):
    data = torch.tensor(fil.read_block(i-1024, 2048)).cuda()
    out = model(transform(torch.tensor(data).cuda())[None])
    out = softmax(out.detach().cpu().numpy(), axis=1)
    triggers.append(out)
    counter += 1
    if out[0, 1]>0.9988:
        key = data.cpu().numpy()
        result = np.repeat(np.mean(data.cpu().numpy(), axis = 1)[:,None], 2048, axis=1) 
        all_detections.append({
            'data': key/result,
            'confidence': out[0, 1],
            'file_index': i,
            'file_name': 'fil_60427_42703_18513000_frb20240114a_0001',
            'normalization': 'normalized',
            'header': header
        })
stack = np.stack(triggers)
positives = stack[:,0,1]
num_pos = np.where(positives > 0.9988)[0].shape[0]
print(f"File 3 detections: {num_pos}")

# fourth file 
print("Processing fourth file...")
fil = r.FilReader('/mnt/primary/ata/results/p031/FRB20240114a_spliced/fil_60395_72956_94613525_frb20240114a_0001/LoB.C1312/decimated.fil')
header = fil.header
print(header)

triggers = []
counter = 0
for i in tqdm(range(8708515,9021015, 2048)):
    data = torch.tensor(fil.read_block(i-1024, 2048)).cuda()
    out = model(transform(torch.tensor(data).cuda())[None])
    out = softmax(out.detach().cpu().numpy(), axis=1)
    triggers.append(out)
    counter += 1
    if out[0, 1]>0.9988:
        key = data.cpu().numpy()
        result = np.repeat(np.mean(data.cpu().numpy(), axis = 1)[:,None], 2048, axis=1) 
        all_detections.append({
            'data': key/result,
            'confidence': out[0, 1],
            'file_index': i,
            'file_name': 'fil_60395_72956_94613525_frb20240114a_0001',
            'normalization': 'normalized',
            'header': header
        })
stack = np.stack(triggers)
positives = stack[:,0,1]
num_pos = np.where(positives > 0.9988)[0].shape[0]
print(f"File 4 detections: {num_pos}")

# fifth file 
print("Processing fifth file...")
fil = r.FilReader('/mnt/primary/ata/results/p031/FRB20240114a_spliced/fil_60429_47342_29343017_frb20240114a_0001/LoB.C1120/decimated.fil')
header = fil.header
print(header)

triggers = []
counter = 0
for i in tqdm(range(10399062,10711562, 2048)):
    data = torch.tensor(fil.read_block(i-1024, 2048)).cuda()
    out = model(transform(torch.tensor(data).cuda())[None])
    out = softmax(out.detach().cpu().numpy(), axis=1)
    triggers.append(out)
    counter += 1
    if out[0, 1]>0.9988:
        key = data.cpu().numpy()
        result = np.repeat(np.mean(data.cpu().numpy(), axis = 1)[:,None], 2048, axis=1) 
        all_detections.append({
            'data': key/result,
            'confidence': out[0, 1],
            'file_index': i,
            'file_name': 'fil_60429_47342_29343017_frb20240114a_0001',
            'normalization': 'normalized',
            'header': header
        })
stack = np.stack(triggers)
positives = stack[:,0,1]
num_pos = np.where(positives > 0.9988)[0].shape[0]
print(f"File 5 detections: {num_pos}")

# sixth file 
print("Processing sixth file...")
fil = r.FilReader('/mnt/primary/ata/results/p031/FRB20240114a_spliced/fil_60456_42557_118616821_frb20240114a_0001/LoC.C1312/decimated.fil')
header = fil.header
print(header)

triggers = []
counter = 0
for i in tqdm(range(1250000,1562500, 2048)):
    data = torch.tensor(fil.read_block(i-1024, 2048)).cuda()
    out = model(transform(torch.tensor(data).cuda())[None])
    out = softmax(out.detach().cpu().numpy(), axis=1)
    triggers.append(out)
    counter += 1
    if out[0, 1]>0.9988:
        key = data.cpu().numpy()
        result = np.repeat(np.mean(data.cpu().numpy(), axis = 1)[:,None], 2048, axis=1) 
        all_detections.append({
            'data': key/result,
            'confidence': out[0, 1],
            'file_index': i,
            'file_name': 'fil_60456_42557_118616821_frb20240114a_0001',
            'normalization': 'normalized',
            'header': header
        })
stack = np.stack(triggers)
positives = stack[:,0,1]
num_pos = np.where(positives > 0.9988)[0].shape[0]
print(f"File 6 detections: {num_pos}")

# Create combined plot
print(f"\nTotal detections found: {len(all_detections)}")

if len(all_detections) > 0:
    # Sort detections by confidence (highest first)
    all_detections.sort(key=lambda x: x['confidence'], reverse=True)
    
    # Create subplots
    n_detections = len(all_detections)
    cols = 2  # Fixed 2 columns
    rows = 5  # Fixed 5 rows
    
    fig, axes = plt.subplots(rows, cols, figsize=(10, 12))
    
    # Flatten axes array to make indexing easier
    axes_flat = axes.flatten()
    
    for idx, detection in enumerate(all_detections):
        ax = axes_flat[idx]
        
        # Calculate median for better contrast
        data_median = np.median(detection['data'])
        im = ax.imshow(detection['data'], aspect=6, cmap='hot', vmin=data_median)
        
        # Set proper time axis ticks
        # Each sample is 6.5e-5 seconds, and we have 2048 samples
        time_increment = 6.5e-5  # seconds per sample
        n_samples = detection['data'].shape[1]  # should be 2048
        total_time = n_samples * time_increment  # total time span
        
        # Create time ticks at reasonable intervals
        n_ticks = 5  # number of ticks we want
        tick_positions = np.linspace(0, n_samples-1, n_ticks)
        tick_labels = [f"{i*time_increment:.2f}" for i in tick_positions]
        
        ax.set_xticks(tick_positions)
        ax.set_xticklabels(tick_labels, fontsize=12)
        
        # Only add x-axis label for bottom row (row 4 in 0-indexed 5 rows)
        if idx >= 8:  # Bottom row in 2x5 grid (indices 8 and 9)
            ax.set_xlabel('Time (seconds)', fontsize=14)
        
        # Set proper frequency axis ticks using header information
        header = detection['header']
        fch1 = header.fch1  # frequency of first channel in MHz
        foff = header.foff  # frequency offset between channels in MHz
        nchans = header.nchans  # number of channels
        
        # Calculate frequency range
        freq_start = fch1
        freq_end = fch1 + (nchans - 1) * foff
        
        # Create exactly 5 frequency ticks evenly spaced
        n_freq_ticks = 5
        freq_tick_positions = np.linspace(0, nchans-1, n_freq_ticks)
        freq_values = [fch1 + i * foff for i in freq_tick_positions]
        freq_labels = [f"{freq:.1f}" for freq in freq_values]
        
        ax.set_yticks(freq_tick_positions)
        ax.set_yticklabels(freq_labels, fontsize=12)
        
        # Only add y-axis label for first column (left column)
        if idx % 2 == 0:  # First column in 2x5 grid (indices 0, 2, 4, 6, 8)
            ax.set_ylabel('Freq. (MHz)', fontsize=14)
        
        # Make tick markers smaller
        ax.tick_params(axis='both', which='major', size=3)
    
    # Hide empty subplots
    for idx in range(n_detections, len(axes_flat)):
        axes_flat[idx].set_visible(False)
    
    # Reduce whitespace between plots
    plt.subplots_adjust(hspace=0.3, wspace=0.2)
    plt.savefig('combined_frb_detections.pdf', dpi=150, bbox_inches='tight', format='pdf')
    plt.show()
    
    print(f"Combined plot saved as 'combined_frb_detections.png'")
    
    # Print summary
    print("\nDetection Summary:")
    for i, detection in enumerate(all_detections):
        print(f"{i+1}. {detection['file_name'][:50]}... - Confidence: {detection['confidence']:.4f}")
else:
    print("No detections found across all files.")