|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
class ResidualBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, stride = 1, downsample = None): |
|
super(ResidualBlock, self).__init__() |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, kernel_size = 3, stride = stride, padding = 1), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU()) |
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(out_channels, out_channels, kernel_size = 3, stride = 1, padding = 1), |
|
nn.BatchNorm2d(out_channels)) |
|
self.downsample = downsample |
|
self.relu = nn.ReLU() |
|
self.out_channels = out_channels |
|
self.dropout_percentage = 0.5 |
|
self.dropout1 = nn.Dropout(p=self.dropout_percentage) |
|
self.batchnorm_mod = nn.BatchNorm2d(out_channels) |
|
|
|
def forward(self, x): |
|
residual = x |
|
out = self.conv1(x) |
|
out = self.dropout1(out) |
|
|
|
out = self.conv2(out) |
|
out = self.dropout1(out) |
|
|
|
if self.downsample: |
|
residual = self.downsample(x) |
|
out += residual |
|
out = self.relu(out) |
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
def __init__(self, inchan, block, layers, num_classes = 10): |
|
super(ResNet, self).__init__() |
|
self.inplanes = 64 |
|
self.eps = 1e-5 |
|
self.relu = nn.ReLU() |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(inchan, 64, kernel_size = 7, stride = 2, padding = 3), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU()) |
|
self.maxpool = nn.MaxPool2d(kernel_size = (2, 2), stride = 2, padding = 1) |
|
self.layer0 = self._make_layer(block, 64, layers[0], stride = 1) |
|
self.layer1 = self._make_layer(block, 128, layers[1], stride = 2) |
|
self.layer2 = self._make_layer(block, 256, layers[2], stride = 2) |
|
self.layer3 = self._make_layer(block, 512, layers[3], stride = 1) |
|
self.avgpool = nn.AvgPool2d(7, stride=1) |
|
self.fc = nn.Linear(39424, num_classes) |
|
self.dropout_percentage = 0.3 |
|
self.dropout1 = nn.Dropout(p=self.dropout_percentage) |
|
|
|
|
|
self.encoder = nn.Sequential( |
|
nn.Conv2d(24, 32, kernel_size = 3, stride =1, padding = 1), |
|
nn.ReLU(True),nn.Dropout(p=self.dropout_percentage), |
|
nn.Conv2d(32, 64, kernel_size = 3, stride =1, padding = 1), |
|
nn.ReLU(True),nn.Dropout(p=self.dropout_percentage), |
|
nn.Conv2d(64, 32, kernel_size = 3, stride = 1, padding = 1), |
|
nn.ReLU(True),nn.Dropout(p=self.dropout_percentage), |
|
nn.Conv2d(32, 24, kernel_size = 3, stride = 1, padding = 1), |
|
nn.Sigmoid() |
|
) |
|
params = sum(p.numel() for p in self.encoder.parameters()) |
|
print("num params encoder ",params) |
|
|
|
def norm(self, x): |
|
shifted = x-x.min() |
|
maxes = torch.amax(abs(shifted), dim=(-2, -1)) |
|
repeated_maxes = maxes.unsqueeze(2).unsqueeze(3).repeat(1, 1, x.shape[-2],x.shape[-1]) |
|
x = shifted/repeated_maxes |
|
return x |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes, kernel_size=1, stride=stride), |
|
nn.BatchNorm2d(planes), |
|
) |
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x, return_mask=False): |
|
|
|
m = self.encoder(x) |
|
self.mask = m |
|
self.value = x |
|
|
|
x = x * m |
|
|
|
x = self.conv1(x) |
|
x = self.maxpool(x) |
|
x = self.layer0(x) |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.avgpool(x) |
|
x = x.view(x.size(0), -1) |
|
x = self.dropout1(x) |
|
x = self.fc(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
class ConvAutoencoder(nn.Module): |
|
def __init__(self): |
|
super(ConvAutoencoder, self).__init__() |
|
|
|
|
|
self.encoder = nn.Sequential( |
|
nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1), |
|
nn.ReLU(), |
|
nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1), |
|
nn.ReLU(), |
|
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1), |
|
nn.ReLU(), |
|
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), |
|
nn.ReLU() |
|
) |
|
|
|
|
|
self.fc1 = nn.Linear(128 * 12 * 16, 8) |
|
self.fc2 = nn.Linear(8, 128 * 12 * 16) |
|
|
|
|
|
self.decoder = nn.Sequential( |
|
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1), |
|
nn.ReLU(), |
|
nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1), |
|
nn.ReLU(), |
|
nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1), |
|
nn.ReLU(), |
|
nn.ConvTranspose2d(16, 3, kernel_size=3, stride=2, padding=1, output_padding=1), |
|
nn.Sigmoid() |
|
) |
|
|
|
def forward(self, x): |
|
|
|
x = self.encoder(x) |
|
|
|
|
|
x = x.view(x.size(0), -1) |
|
|
|
|
|
x = self.fc1(x) |
|
x = self.fc2(x) |
|
|
|
|
|
x = x.view(x.size(0), 128, 12, 16) |
|
|
|
|
|
x = self.decoder(x) |
|
|
|
return x |
|
|