import torch import torch.nn as nn import torch.nn.functional as F class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride = 1, downsample = None): super(ResidualBlock, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size = 3, stride = stride, padding = 1), nn.BatchNorm2d(out_channels), nn.ReLU()) self.conv2 = nn.Sequential( nn.Conv2d(out_channels, out_channels, kernel_size = 3, stride = 1, padding = 1), nn.BatchNorm2d(out_channels)) self.downsample = downsample self.relu = nn.ReLU() self.out_channels = out_channels self.dropout_percentage = 0.5 self.dropout1 = nn.Dropout(p=self.dropout_percentage) self.batchnorm_mod = nn.BatchNorm2d(out_channels) def forward(self, x): residual = x out = self.conv1(x) out = self.dropout1(out) # out = self.batchnorm_mod(out) out = self.conv2(out) out = self.dropout1(out) # out = self.batchnorm_mod(out) if self.downsample: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, inchan, block, layers, num_classes = 10): super(ResNet, self).__init__() self.inplanes = 64 self.eps = 1e-5 self.relu = nn.ReLU() self.conv1 = nn.Sequential( nn.Conv2d(inchan, 64, kernel_size = 7, stride = 2, padding = 3), nn.BatchNorm2d(64), nn.ReLU()) self.maxpool = nn.MaxPool2d(kernel_size = (2, 2), stride = 2, padding = 1) self.layer0 = self._make_layer(block, 64, layers[0], stride = 1) self.layer1 = self._make_layer(block, 128, layers[1], stride = 2) self.layer2 = self._make_layer(block, 256, layers[2], stride = 2) self.layer3 = self._make_layer(block, 512, layers[3], stride = 1) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(39424, num_classes) self.dropout_percentage = 0.3 self.dropout1 = nn.Dropout(p=self.dropout_percentage) # Encoder self.encoder = nn.Sequential( nn.Conv2d(24, 32, kernel_size = 3, stride =1, padding = 1), nn.ReLU(True),nn.Dropout(p=self.dropout_percentage), nn.Conv2d(32, 64, kernel_size = 3, stride =1, padding = 1), nn.ReLU(True),nn.Dropout(p=self.dropout_percentage), nn.Conv2d(64, 32, kernel_size = 3, stride = 1, padding = 1), nn.ReLU(True),nn.Dropout(p=self.dropout_percentage), nn.Conv2d(32, 24, kernel_size = 3, stride = 1, padding = 1), nn.Sigmoid() ) params = sum(p.numel() for p in self.encoder.parameters()) print("num params encoder ",params) def norm(self, x): shifted = x-x.min() maxes = torch.amax(abs(shifted), dim=(-2, -1)) repeated_maxes = maxes.unsqueeze(2).unsqueeze(3).repeat(1, 1, x.shape[-2],x.shape[-1]) x = shifted/repeated_maxes return x def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes, kernel_size=1, stride=stride), nn.BatchNorm2d(planes), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x, return_mask=False): # x = self.norm(x) x = self.conv1(x) x = self.maxpool(x) x = self.layer0(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.dropout1(x) x = self.fc(x) # return x if return_mask: return x, self.mask, self.value else: return x class ConvAutoencoder(nn.Module): def __init__(self): super(ConvAutoencoder, self).__init__() # Encoder self.encoder = nn.Sequential( nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1), # (16, 96, 128) nn.ReLU(), nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1), # (32, 48, 64) nn.ReLU(), nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1), # (64, 24, 32) nn.ReLU(), nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),# (128, 12, 16) nn.ReLU() ) # Fully connected latent space self.fc1 = nn.Linear(128 * 12 * 16, 8) self.fc2 = nn.Linear(8, 128 * 12 * 16) # Decoder self.decoder = nn.Sequential( nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1), # (64, 24, 32) nn.ReLU(), nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1), # (32, 48, 64) nn.ReLU(), nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1), # (16, 96, 128) nn.ReLU(), nn.ConvTranspose2d(16, 3, kernel_size=3, stride=2, padding=1, output_padding=1), # (3, 192, 256) nn.Sigmoid() # Using Sigmoid for the final activation to get output in range [0, 1] ) def forward(self, x): # Encode x = self.encoder(x) # Flatten the encoded output x = x.view(x.size(0), -1) # Fully connected latent space x = self.fc1(x) x = self.fc2(x) # Reshape the output to the shape suitable for the decoder x = x.view(x.size(0), 128, 12, 16) # Decode x = self.decoder(x) return x