File size: 13,306 Bytes
508087f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
"""
To train a GPT from sratch
"""
import argparse
import os
import time
import math
import pickle
from contextlib import nullcontext
import numpy as np
import torch
from torch.nn.parallel import DistributedDataParallel
from torch.distributed import init_process_group, destroy_process_group
import pynvml
from model import GPTConfig, GPT
parser = argparse.ArgumentParser(description="Load configuration file")
parser.add_argument('--config', type=str, required=True, help='Path to the configuration file')
args = parser.parse_args()
config_path = args.config
exec(open(config_path).read())
# -----Load all global variables for logging--------------------------------------------------------
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
# exec(open(config_path).read()) # overrides from command line or config file
config = {k: globals()[k] for k in config_keys}
# -----------------------------------------------------------------------------
def log_and_write(filename, message):
with open(filename, 'a') as f:
f.write(message + "\n")
print(message)
log_and_write(log_dir,f'gradient_accumulation_steps: {gradient_accumulation_steps}, batch_size: {batch_size}, \nblock_size: {block_size}, \nn_layer: {n_layer}, n_head: {n_head}, n_embd: {n_embd}, dropout: {dropout}, bias: {bias}, \nlearning_rate: {learning_rate}, max_iters: {max_iters}, \nweight_decay: {weight_decay}, beta1: {beta1}, beta2: {beta2}, grad_clip: {grad_clip}, decay_lr: {decay_lr}, \nwarmup_iters: {warmup_iters}, lr_decay_iters: {lr_decay_iters}, \nmin_lr: {min_lr}, backend: {backend}, device: {device},\n dtype: {dtype}, compile: {compile}')
log_and_write(log_dir, f'meta_vocab_size: {meta_vocab_size}')
log_and_write(log_dir, f'training data: {data_dir}')
# -----------------------------------------------------------------------------
# various inits, derived attributes, I/O setup
# ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
if ddp:
init_process_group(backend=backend)
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
seed_offset = ddp_rank # each process gets a different seed
# world_size number of processes will be training simultaneously, so we can scale
# down the desired gradient accumulation iterations per process proportionally
assert gradient_accumulation_steps % ddp_world_size == 0
gradient_accumulation_steps //= ddp_world_size
else:
# if not ddp, we are running on a single gpu, and one process
master_process = True
seed_offset = 0
ddp_world_size = 1
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
print('ddp_world_size:',ddp_world_size)
print(f"tokens per iteration will be: {tokens_per_iter:,}")
pynvml.nvmlInit()
def print_gpu_memory_usage():
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
info = pynvml.nvmlDeviceGetMemoryInfo(handle)
print(f"Used: {info.used / 1024**2:.2f}MB/{info.total / 1024**2:.2f}MB ({info.used / info.total * 100:.2f}%)")
if master_process:
os.makedirs(out_dir, exist_ok=True)
torch.manual_seed(1337 + seed_offset)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
# data loader
# data_dir = os.path.join('data', dataset)
train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
val_data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
def get_batch(split):
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
if device_type == 'cuda':
# pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
else:
x, y = x.to(device), y.to(device)
return x, y
# init these up here, can override if init_from='resume' (i.e. from a checkpoint)
iter_num = 0
best_val_loss = 1e9
# attempt to derive vocab_size from the dataset
meta_path = os.path.join(data_dir, 'meta.pkl')
if os.path.exists(meta_path):
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
meta_vocab_size = meta['vocab_size']
print(f"found vocab_size = {meta_vocab_size}")
# model init
model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
bias=bias, vocab_size=None, dropout=dropout) # start with model_args from command line
if init_from == 'scratch':
# init a new model from scratch
print("Initializing a new model from scratch")
# determine the vocab size we'll use for from-scratch training
if meta_vocab_size is None:
print("defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)")
model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304
gptconf = GPTConfig(**model_args)
model = GPT(gptconf)
elif init_from == 'resume':
print(f"Resuming training from {out_dir}")
# resume training from a checkpoint.
# ckpt_path = os.path.join(out_dir, 'ckpt.pt')
checkpoint = torch.load(ckpt_path, map_location=device)
checkpoint_model_args = checkpoint['model_args']
# force these config attributes to be equal otherwise we can't even resume training
# the rest of the attributes (e.g. dropout) can stay as desired from command line
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
model_args[k] = checkpoint_model_args[k]
# create the model
gptconf = GPTConfig(**model_args)
model = GPT(gptconf)
state_dict = checkpoint['model']
# fix the keys of the state dictionary :(
# honestly no idea how checkpoints sometimes get this prefix, have to debug more
unwanted_prefix = '_orig_mod.'
for k,v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict)
iter_num = checkpoint['iter_num']
best_val_loss = checkpoint['best_val_loss']
elif init_from.startswith('gpt2'):
print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
# initialize from OpenAI GPT-2 weights
override_args = dict(dropout=dropout)
model = GPT.from_pretrained(init_from, override_args)
# read off the created config params, so we can store them into checkpoint correctly
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
model_args[k] = getattr(model.config, k)
# crop down the model block size if desired, using model surgery
if block_size < model.config.block_size:
model.crop_block_size(block_size)
model_args['block_size'] = block_size # so that the checkpoint will have the right value
model.to(device)
# initialize a GradScaler. If enabled=False scaler is a no-op
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float32'))
# optimizer
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
if init_from == 'resume':
optimizer.load_state_dict(checkpoint['optimizer'])
checkpoint = None # free up memory
# compile the model
if compile:
print("compiling the model... (takes a ~minute)")
unoptimized_model = model
model = torch.compile(model) # requires PyTorch 2.0
# wrap model into DDP container
if ddp:
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
# helps estimate an arbitrarily accurate loss over either split using many batches
@torch.no_grad()
def estimate_loss():
out = {}
perplexities = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
total_loss = 0 # 用于计算perplexity
for k in range(eval_iters):
X, Y = get_batch(split)
with ctx:
logits, loss = model(X, Y)
losses[k] = loss.item()
total_loss += loss.item()
avg_loss = losses.mean()
out[split] = avg_loss
perplexities[split] = torch.exp(avg_loss) # 计算perplexity
model.train()
return out, perplexities
# learning rate decay scheduler (cosine with warmup)
def get_lr(it):
# 1) linear warmup for warmup_iters steps
if it < warmup_iters:
return learning_rate * it / warmup_iters
# 2) if it > lr_decay_iters, return min learning rate
if it > lr_decay_iters:
return min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
return min_lr + coeff * (learning_rate - min_lr)
# training loop
X, Y = get_batch('train') # fetch the very first batch
t0 = time.time()
local_iter_num = 0 # number of iterations in the lifetime of this process
raw_model = model.module if ddp else model # unwrap DDP container if needed
running_mfu = -1.0
while True:
# determine and set the learning rate for this iteration
lr = get_lr(iter_num) if decay_lr else learning_rate
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# evaluate the loss on train/val sets and write checkpoints
if iter_num % eval_interval == 0 and master_process:
losses, perplexities = estimate_loss()
log_and_write(log_dir, f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f},train perplexity: {perplexities['train']:.4f}, val perplexity: {perplexities['val']:.4f}")
if iter_num % 200 == 0:
print_gpu_memory_usage()
if losses['val'] < best_val_loss or always_save_checkpoint:
best_val_loss = losses['val']
if iter_num > 0:
checkpoint = {
'model': raw_model.state_dict(),
'optimizer': optimizer.state_dict(),
'model_args': model_args,
'iter_num': iter_num,
'best_val_loss': best_val_loss,
'config': config,
}
log_and_write(log_dir, f"saving checkpoint to {out_dir}")
torch.save(checkpoint, os.path.join(out_dir, f'ckpt_{iter_num}.pt'))
if iter_num == 0 and eval_only:
break
# forward backward update, with optional gradient accumulation to simulate larger batch size
# and using the GradScaler if data type is float16
for micro_step in range(gradient_accumulation_steps):
if ddp:
# in DDP training we only need to sync gradients at the last micro step.
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
with ctx:
logits, loss = model(X, Y)
loss = loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation
# immediately async prefetch next batch while model is doing the forward pass on the GPU
X, Y = get_batch('train')
# backward pass, with gradient scaling if training in fp16
scaler.scale(loss).backward()
# clip the gradient
if grad_clip != 0.0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
# step the optimizer and scaler if training in fp16
scaler.step(optimizer)
scaler.update()
# flush the gradients as soon as we can, no need for this memory anymore
optimizer.zero_grad(set_to_none=True)
# timing and logging
t1 = time.time()
dt = t1 - t0
t0 = t1
if iter_num % log_interval == 0 and master_process:
# get loss as float. note: this is a CPU-GPU sync point
# scale up to undo the division above, approximating the true total loss (exact would have been a sum)
lossf = loss.item() * gradient_accumulation_steps
if local_iter_num >= 5: # let the training loop settle a bit
mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
log_and_write(log_dir, f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, lr {lr}, mfu {running_mfu*100:.2f}%")
iter_num += 1
local_iter_num += 1
# termination conditions
if iter_num > max_iters:
break
if ddp:
destroy_process_group()
pynvml.nvmlShutdown()
|