import argparse import os from tqdm import tqdm from transformers import AutoTokenizer from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode parser = argparse.ArgumentParser(description="Tokenizer training script.") parser.add_argument("--base_tokenizer", type=str, default="gpt2-medium", help="Base tokenizer.") parser.add_argument("--txt_file_path", type=str, required=True, help="Path to the text file for training.") parser.add_argument("--batch_size", type=int, default=300000, help="Batch size for training") parser.add_argument("--vocab_size", type=int, default=2048, help="Vocabulary size for the tokenizer") parser.add_argument("--new_tokenizer_path", type=str, required=True, help="Name of new tokenizer") parser.add_argument("--push_to_hub", action='store_true', help="Whether to push the tokenizer to Hugging Face's model hub.") args = parser.parse_args() print("Base Tokenizer:", args.base_tokenizer) print("Text File Path:", args.txt_file_path) print("Batch Size:", args.batch_size) print("Vocabulary Size:", args.vocab_size) print("New Tokenizer Path:", args.new_tokenizer_path) print("Push to Hub:", args.push_to_hub) # Iterator for Training def batch_iterator(): with open(args.txt_file_path, "r", encoding="utf-8") as file: lines = file.readlines() for i in tqdm(range(0, len(lines), args.batch_size)): # for i in range(0, len(lines), args.batch_size): if i % 100000 == 0: print(i,'lines proceeded...') yield lines[i:i+args.batch_size] # Load base tokenizer tokenizer = AutoTokenizer.from_pretrained(args.base_tokenizer) base_vocab = list(bytes_to_unicode().values()) # Train and save new tokenizer new_tokenizer = tokenizer.train_new_from_iterator( batch_iterator(), vocab_size=args.vocab_size, initial_alphabet=base_vocab ) new_tokenizer.save_pretrained(args.new_tokenizer_path, push_to_hub=args.push_to_hub)