|
|
|
import argparse |
|
import os |
|
import random |
|
import time |
|
from distutils.util import strtobool |
|
|
|
import gym |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.optim as optim |
|
from stable_baselines3.common.atari_wrappers import ( |
|
ClipRewardEnv, |
|
EpisodicLifeEnv, |
|
FireResetEnv, |
|
MaxAndSkipEnv, |
|
NoopResetEnv, |
|
) |
|
from stable_baselines3.common.buffers import ReplayBuffer |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
|
|
def parse_args(): |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"), |
|
help="the name of this experiment") |
|
parser.add_argument("--seed", type=int, default=1, |
|
help="seed of the experiment") |
|
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="if toggled, `torch.backends.cudnn.deterministic=False`") |
|
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="if toggled, cuda will be enabled by default") |
|
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="if toggled, this experiment will be tracked with Weights and Biases") |
|
parser.add_argument("--wandb-project-name", type=str, default="cleanRL", |
|
help="the wandb's project name") |
|
parser.add_argument("--wandb-entity", type=str, default=None, |
|
help="the entity (team) of wandb's project") |
|
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to capture videos of the agent performances (check out `videos` folder)") |
|
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to save model into the `runs/{run_name}` folder") |
|
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to upload the saved model to huggingface") |
|
parser.add_argument("--hf-entity", type=str, default="", |
|
help="the user or org name of the model repository from the Hugging Face Hub") |
|
|
|
|
|
parser.add_argument("--env-id", type=str, default="PongNoFrameskip-v4", |
|
help="the id of the environment") |
|
parser.add_argument("--total-timesteps", type=int, default=10000000, |
|
help="total timesteps of the experiments") |
|
parser.add_argument("--learning-rate", type=float, default=0.0001, |
|
help="the learning rate of the optimizer") |
|
parser.add_argument("--max-gradient-norm", type=float, default=float('inf'), |
|
help="gradient clipping value") |
|
parser.add_argument("--double-learning", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="enable double learning DDQN") |
|
parser.add_argument("--buffer-size", type=int, default=1000000, |
|
help="the replay memory buffer size") |
|
parser.add_argument("--gamma", type=float, default=0.99, |
|
help="the discount factor gamma") |
|
parser.add_argument("--target-tau", type=float, default=1.0, |
|
help="the target network update rate") |
|
parser.add_argument("--policy-tau", type=float, default=1.0, |
|
help="the target network update rate") |
|
parser.add_argument("--target-network-frequency", type=int, default=1000, |
|
help="the timesteps it takes to update the target network") |
|
parser.add_argument("--policy-network-frequency", type=int, default=5000, |
|
help="the timesteps it takes to update the policy network") |
|
parser.add_argument("--batch-size", type=int, default=32, |
|
help="the batch size of sample from the reply memory") |
|
parser.add_argument("--start-e", type=float, default=1.0, |
|
help="the starting epsilon for exploration") |
|
parser.add_argument("--end-e", type=float, default=0.05, |
|
help="the ending epsilon for exploration") |
|
parser.add_argument("--exploration-fraction", type=float, default=0.2, |
|
help="the fraction of `total-timesteps` it takes from start-e to go end-e") |
|
parser.add_argument("--learning-starts", type=int, default=10000, |
|
help="timestep to start learning") |
|
parser.add_argument("--train-frequency", type=int, default=1, |
|
help="the frequency of training") |
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
def make_env(env_id, seed, idx, capture_video, run_name): |
|
def thunk(): |
|
env = gym.make(env_id) |
|
env = gym.wrappers.RecordEpisodeStatistics(env) |
|
if capture_video: |
|
if idx == 0: |
|
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}") |
|
env = NoopResetEnv(env, noop_max=30) |
|
env = MaxAndSkipEnv(env, skip=4) |
|
env = EpisodicLifeEnv(env) |
|
if "FIRE" in env.unwrapped.get_action_meanings(): |
|
env = FireResetEnv(env) |
|
env = ClipRewardEnv(env) |
|
env = gym.wrappers.ResizeObservation(env, (84, 84)) |
|
env = gym.wrappers.GrayScaleObservation(env) |
|
env = gym.wrappers.FrameStack(env, 4) |
|
env.seed(seed) |
|
env.action_space.seed(seed) |
|
env.observation_space.seed(seed) |
|
return env |
|
|
|
return thunk |
|
|
|
|
|
|
|
class QNetwork(nn.Module): |
|
def __init__(self, env): |
|
super().__init__() |
|
self.network = nn.Sequential( |
|
nn.Conv2d(4, 32, 8, stride=4), |
|
nn.ReLU(), |
|
nn.Conv2d(32, 64, 4, stride=2), |
|
nn.ReLU(), |
|
nn.Conv2d(64, 64, 3, stride=1), |
|
nn.ReLU(), |
|
nn.Flatten(), |
|
nn.Linear(3136, 512), |
|
nn.ReLU(), |
|
nn.Linear(512, env.single_action_space.n), |
|
) |
|
|
|
def forward(self, x): |
|
return self.network(x / 255.0) |
|
|
|
|
|
def linear_schedule(start_e: float, end_e: float, duration: int, t: int): |
|
slope = (end_e - start_e) / duration |
|
return max(slope * t + start_e, end_e) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}" |
|
if args.track: |
|
import wandb |
|
|
|
args.alg_type = os.path.basename(__file__) |
|
wandb_sess = wandb.init( |
|
project=args.wandb_project_name, |
|
entity=args.wandb_entity, |
|
config=vars(args), |
|
save_code=True, |
|
|
|
name=run_name, |
|
sync_tensorboard=False, |
|
monitor_gym=True, |
|
) |
|
writer = SummaryWriter(f"runs/{run_name}") |
|
writer.add_text( |
|
"hyperparameters", |
|
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])), |
|
) |
|
|
|
def log_value(name: str, x: float, y: int): |
|
|
|
wandb.log({name: x, "global_step": y}) |
|
|
|
|
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
torch.backends.cudnn.deterministic = args.torch_deterministic |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu") |
|
|
|
|
|
envs = gym.vector.SyncVectorEnv([make_env(args.env_id, args.seed, 0, args.capture_video, run_name)]) |
|
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported" |
|
|
|
q_network = QNetwork(envs).to(device) |
|
optimizer = optim.RMSprop(q_network.parameters(), lr=args.learning_rate) |
|
target_network = QNetwork(envs).to(device) |
|
policy_network = QNetwork(envs).to(device) |
|
target_network.load_state_dict(q_network.state_dict()) |
|
policy_network.load_state_dict(q_network.state_dict()) |
|
|
|
rb = ReplayBuffer( |
|
args.buffer_size, |
|
envs.single_observation_space, |
|
envs.single_action_space, |
|
device, |
|
optimize_memory_usage=True, |
|
handle_timeout_termination=True, |
|
) |
|
start_time = time.time() |
|
target_update_counter = 0 |
|
policy_update_counter = 0 |
|
episode_returns = [] |
|
|
|
|
|
obs = envs.reset() |
|
for global_step in range(args.total_timesteps): |
|
|
|
epsilon = linear_schedule(args.start_e, args.end_e, args.exploration_fraction * args.total_timesteps, global_step) |
|
|
|
if random.random() < epsilon: |
|
actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)]) |
|
else: |
|
q_values = policy_network(torch.Tensor(obs).to(device)) |
|
actions = torch.argmax(q_values, dim=1).cpu().numpy() |
|
|
|
|
|
next_obs, rewards, dones, infos = envs.step(actions) |
|
|
|
|
|
for info in infos: |
|
if "episode" in info.keys(): |
|
episode_returns.append(info['episode']['r']) |
|
episode_returns = episode_returns[-100:] |
|
print(f"step={global_step}, return={info['episode']['r']}, sps={int(global_step / (time.time() - start_time))}") |
|
log_value("perf/episodic_return", info["episode"]["r"], global_step) |
|
log_value("perf/episodic_return_mean_100", np.mean(episode_returns), global_step) |
|
log_value("perf/episodic_return_std_100", np.std(episode_returns), global_step) |
|
log_value("debug/episodic_length", info["episode"]["l"], global_step) |
|
log_value("ex2/epsilon", epsilon, global_step) |
|
break |
|
|
|
|
|
real_next_obs = next_obs.copy() |
|
for idx, d in enumerate(dones): |
|
if d: |
|
real_next_obs[idx] = infos[idx]["terminal_observation"] |
|
rb.add(obs, real_next_obs, actions, rewards, dones, infos) |
|
|
|
|
|
obs = next_obs |
|
|
|
|
|
if global_step > args.learning_starts: |
|
|
|
if global_step % args.train_frequency == 0: |
|
data = rb.sample(args.batch_size) |
|
with torch.no_grad(): |
|
if args.double_learning: |
|
argmax_a = q_network(data.next_observations).max(1)[1].unsqueeze(1) |
|
else: |
|
argmax_a = target_network(data.next_observations).max(1)[1].unsqueeze(1) |
|
|
|
target_max = target_network(data.next_observations).gather(1, argmax_a).squeeze() |
|
td_target = data.rewards.flatten() + args.gamma * target_max * (1 - data.dones.flatten()) |
|
|
|
old_val = q_network(data.observations).gather(1, data.actions).squeeze() |
|
loss = F.mse_loss(td_target, old_val) |
|
|
|
if global_step % 100 == 0: |
|
|
|
prev = old_val.detach().cpu().numpy() |
|
new = td_target.detach().cpu().numpy() |
|
diff, a_diff = new-prev, np.abs(new-prev) |
|
|
|
mean, a_mean = np.mean(diff), np.mean(a_diff) |
|
median, a_median = np.median(diff), np.median(a_diff) |
|
maximum, a_maximum = np.max(diff), np.max(a_diff) |
|
minimum, a_minimum = np.min(diff), np.min(a_diff) |
|
std, a_std = np.std(diff), np.std(a_diff) |
|
below, a_below = mean - std, a_mean - a_std |
|
above, a_above = mean + std, a_mean + a_std |
|
pu_scalar, a_pu_scalar = 2 * mean / maximum, 2 * a_mean / a_maximum |
|
policy_frequency_scalar_ratio = args.policy_network_frequency * pu_scalar |
|
a_policy_frequency_scalar_ratio = args.policy_network_frequency * a_pu_scalar |
|
|
|
log_value("losses/td_loss", loss, global_step) |
|
log_value("losses/q_values", old_val.mean().item(), global_step) |
|
log_value("td/mean", mean, global_step) |
|
log_value("td/a_mean", a_mean, global_step) |
|
log_value("td/median", median, global_step) |
|
log_value("td/a_median", a_median, global_step) |
|
log_value("td/max", maximum, global_step) |
|
log_value("td/a_max", a_maximum, global_step) |
|
log_value("td/min", minimum, global_step) |
|
log_value("td/a_min", a_minimum, global_step) |
|
log_value("td/std", std, global_step) |
|
log_value("td/a_std", a_std, global_step) |
|
log_value("td/below", below, global_step) |
|
log_value("td/a_below", a_below, global_step) |
|
log_value("td/above", above, global_step) |
|
log_value("td/a_above", a_above, global_step) |
|
log_value("alg/pu_scalar", pu_scalar, global_step) |
|
log_value("alg/a_pu_scalar", a_pu_scalar, global_step) |
|
log_value("alg/policy_frequency_scalar_ratio", policy_frequency_scalar_ratio, global_step) |
|
log_value("alg/a_policy_frequency_scalar_ratio", a_policy_frequency_scalar_ratio, global_step) |
|
log_value("debug/steps_per_second", int(global_step / (time.time() - start_time)), global_step) |
|
|
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
torch.nn.utils.clip_grad_norm_(q_network.parameters(), |
|
args.max_gradient_norm) |
|
optimizer.step() |
|
|
|
|
|
if global_step % args.target_network_frequency == 0: |
|
target_update_counter += 1 |
|
for target_network_param, q_network_param in zip(target_network.parameters(), q_network.parameters()): |
|
target_network_param.data.copy_( |
|
args.target_tau * q_network_param.data + (1.0 - args.target_tau) * target_network_param.data |
|
) |
|
|
|
|
|
if global_step % args.policy_network_frequency == 0: |
|
policy_update_counter += 1 |
|
for policy_network_param, q_network_param in zip(policy_network.parameters(), q_network.parameters()): |
|
policy_network_param.data.copy_( |
|
args.policy_tau * q_network_param.data + (1.0 - args.policy_tau) * policy_network_param.data |
|
) |
|
|
|
if global_step % 100 == 0: |
|
log_value("alg/n_target_update", target_update_counter, global_step) |
|
log_value("alg/n_policy_update", policy_update_counter, global_step) |
|
|
|
if args.save_model: |
|
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model" |
|
torch.save(policy_network.state_dict(), model_path) |
|
print(f"model saved to {model_path}") |
|
from cleanrl_utils.evals.dqn_eval import evaluate |
|
|
|
episodic_returns = evaluate( |
|
model_path, |
|
make_env, |
|
args.env_id, |
|
eval_episodes=10, |
|
run_name=f"{run_name}-eval", |
|
Model=QNetwork, |
|
device=device, |
|
epsilon=0.05, |
|
) |
|
for idx, episodic_return in enumerate(episodic_returns): |
|
log_value("eval/episodic_return", episodic_return, idx) |
|
|
|
|
|
if args.upload_model: |
|
from cleanrl_utils.huggingface import push_to_hub |
|
|
|
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}" |
|
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name |
|
push_to_hub(args, np.mean(episode_returns), repo_id, "DQPN_freq", f"runs/{run_name}", f"videos/{run_name}-eval") |
|
|
|
wandb_sess.finish() |
|
envs.close() |
|
writer.close() |
|
|