pgajo commited on
Commit
67c07d0
·
verified ·
1 Parent(s): 0fe9088

Upload 11 files

Browse files
README.md CHANGED
@@ -1,199 +1,242 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
 
 
10
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
 
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
 
 
 
45
 
46
- ### Downstream Use [optional]
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
 
132
 
 
 
 
 
 
 
 
 
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
 
 
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
 
 
 
 
140
 
141
- ## Environmental Impact
 
 
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
 
 
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
154
 
155
- ### Model Architecture and Objective
 
 
 
 
156
 
157
- [More Information Needed]
 
158
 
159
- ### Compute Infrastructure
 
 
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - audio
6
+ - automatic-speech-recognition
7
+ - hf-asr-leaderboard
8
+ widget:
9
+ - example_title: Librispeech sample 1
10
+ src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
11
+ - example_title: Librispeech sample 2
12
+ src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
13
+ model-index:
14
+ - name: whisper-medium.en
15
+ results:
16
+ - task:
17
+ name: Automatic Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: LibriSpeech (clean)
21
+ type: librispeech_asr
22
+ config: clean
23
+ split: test
24
+ args:
25
+ language: en
26
+ metrics:
27
+ - name: Test WER
28
+ type: wer
29
+ value: 4.120542365210176
30
+ - task:
31
+ name: Automatic Speech Recognition
32
+ type: automatic-speech-recognition
33
+ dataset:
34
+ name: LibriSpeech (other)
35
+ type: librispeech_asr
36
+ config: other
37
+ split: test
38
+ args:
39
+ language: en
40
+ metrics:
41
+ - name: Test WER
42
+ type: wer
43
+ value: 7.431640255663553
44
+ pipeline_tag: automatic-speech-recognition
45
+ license: apache-2.0
46
  ---
47
 
48
+ # Whisper
49
 
50
+ Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours
51
+ of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need
52
+ for fine-tuning.
53
 
54
+ Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)
55
+ by Alec Radford et al. from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper).
56
 
57
+ **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were
58
+ copied and pasted from the original model card.
59
 
60
+ ## Model details
61
 
62
+ Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model.
63
+ It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision.
64
 
65
+ The models were trained on either English-only data or multilingual data. The English-only models were trained
66
+ on the task of speech recognition. The multilingual models were trained on both speech recognition and speech
67
+ translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio.
68
+ For speech translation, the model predicts transcriptions to a *different* language to the audio.
69
 
70
+ Whisper checkpoints come in five configurations of varying model sizes.
71
+ The smallest four are trained on either English-only or multilingual data.
72
+ The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
73
+ are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
74
+ checkpoints are summarised in the following table with links to the models on the Hub:
75
 
76
+ | Size | Parameters | English-only | Multilingual |
77
+ |----------|------------|------------------------------------------------------|-----------------------------------------------------|
78
+ | tiny | 39 M | [](https://huggingface.co/openai/whisper-tiny.en) | [](https://huggingface.co/openai/whisper-tiny) |
79
+ | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
80
+ | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [](https://huggingface.co/openai/whisper-small) |
81
+ | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
82
+ | large | 1550 M | x | [](https://huggingface.co/openai/whisper-large) |
83
+ | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
84
 
85
+ # Usage
86
 
87
+ This checkpoint is an *English-only* model, meaning it can be used for English speech recognition. Multilingual speech
88
+ recognition or speech translation is possible through use of a multilingual checkpoint.
89
 
90
+ To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor).
 
 
91
 
92
+ The `WhisperProcessor` is used to:
93
+ 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model)
94
+ 2. Post-process the model outputs (converting them from tokens to text)
95
 
96
+ ## Transcription
97
 
98
+ ```python
99
+ >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
100
+ >>> from datasets import load_dataset
101
 
102
+ >>> # load model and processor
103
+ >>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium.en")
104
+ >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium.en")
105
 
106
+ >>> # load dummy dataset and read audio files
107
+ >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
108
+ >>> sample = ds[0]["audio"]
109
+ >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
110
 
111
+ >>> # generate token ids
112
+ >>> predicted_ids = model.generate(input_features)
113
+ >>> # decode token ids to text
114
+ >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
115
+ ['<|startoftranscript|><|notimestamps|> Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.<|endoftext|>']
116
 
117
+ >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
118
+ [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
119
+ ```
120
+ The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
 
122
  ## Evaluation
123
 
124
+ This code snippet shows how to evaluate Whisper medium.en on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr):
125
+
126
+ ```python
127
+ >>> from datasets import load_dataset
128
+ >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor
129
+ >>> import torch
130
+ >>> from evaluate import load
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
+ >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
133
 
134
+ >>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium.en")
135
+ >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium.en").to("cuda")
136
 
137
+ >>> def map_to_pred(batch):
138
+ >>> audio = batch["audio"]
139
+ >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
140
+ >>> batch["reference"] = processor.tokenizer._normalize(batch['text'])
141
+ >>>
142
+ >>> with torch.no_grad():
143
+ >>> predicted_ids = model.generate(input_features.to("cuda"))[0]
144
+ >>> transcription = processor.decode(predicted_ids)
145
+ >>> batch["prediction"] = processor.tokenizer._normalize(transcription)
146
+ >>> return batch
147
 
148
+ >>> result = librispeech_test_clean.map(map_to_pred)
149
 
150
+ >>> wer = load("wer")
151
+ >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
152
+ 3.0154449620004904
153
+ ```
154
 
155
+ ## Long-Form Transcription
156
 
157
+ The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
158
+ algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
159
+ [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
160
+ method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline
161
+ can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`:
162
 
163
+ ```python
164
+ >>> import torch
165
+ >>> from transformers import pipeline
166
+ >>> from datasets import load_dataset
167
 
168
+ >>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
169
 
170
+ >>> pipe = pipeline(
171
+ >>> "automatic-speech-recognition",
172
+ >>> model="openai/whisper-medium.en",
173
+ >>> chunk_length_s=30,
174
+ >>> device=device,
175
+ >>> )
176
 
177
+ >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
178
+ >>> sample = ds[0]["audio"]
 
 
 
179
 
180
+ >>> prediction = pipe(sample.copy(), batch_size=8)["text"]
181
+ " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
182
 
183
+ >>> # we can also return timestamps for the predictions
184
+ >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
185
+ [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
186
+ 'timestamp': (0.0, 5.44)}]
187
+ ```
188
 
189
+ Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm.
190
+ ## Fine-Tuning
191
 
192
+ The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
193
+ its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog
194
+ post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step
195
+ guide to fine-tuning the Whisper model with as little as 5 hours of labelled data.
196
 
197
+ ### Evaluated Use
198
 
199
+ The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research.
200
 
201
+ The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them.
202
 
203
+ In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes.
204
 
 
205
 
206
+ ## Training Data
207
 
208
+ The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages.
209
 
210
+ As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
211
 
 
212
 
213
+ ## Performance and Limitations
214
 
215
+ Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level.
216
 
217
+ However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself.
218
 
219
+ Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf).
220
 
221
+ In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages.
222
 
 
223
 
224
+ ## Broader Implications
225
 
226
+ We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications.
227
 
228
+ There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects.
229
 
 
230
 
231
+ ### BibTeX entry and citation info
232
+ ```bibtex
233
+ @misc{radford2022whisper,
234
+ doi = {10.48550/ARXIV.2212.04356},
235
+ url = {https://arxiv.org/abs/2212.04356},
236
+ author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
237
+ title = {Robust Speech Recognition via Large-Scale Weak Supervision},
238
+ publisher = {arXiv},
239
+ year = {2022},
240
+ copyright = {arXiv.org perpetual, non-exclusive license}
241
+ }
242
+ ```
added_tokens.json ADDED
@@ -0,0 +1,1609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|0.00|>": 50363,
3
+ "<|0.02|>": 50364,
4
+ "<|0.04|>": 50365,
5
+ "<|0.06|>": 50366,
6
+ "<|0.08|>": 50367,
7
+ "<|0.10|>": 50368,
8
+ "<|0.12|>": 50369,
9
+ "<|0.14|>": 50370,
10
+ "<|0.16|>": 50371,
11
+ "<|0.18|>": 50372,
12
+ "<|0.20|>": 50373,
13
+ "<|0.22|>": 50374,
14
+ "<|0.24|>": 50375,
15
+ "<|0.26|>": 50376,
16
+ "<|0.28|>": 50377,
17
+ "<|0.30|>": 50378,
18
+ "<|0.32|>": 50379,
19
+ "<|0.34|>": 50380,
20
+ "<|0.36|>": 50381,
21
+ "<|0.38|>": 50382,
22
+ "<|0.40|>": 50383,
23
+ "<|0.42|>": 50384,
24
+ "<|0.44|>": 50385,
25
+ "<|0.46|>": 50386,
26
+ "<|0.48|>": 50387,
27
+ "<|0.50|>": 50388,
28
+ "<|0.52|>": 50389,
29
+ "<|0.54|>": 50390,
30
+ "<|0.56|>": 50391,
31
+ "<|0.58|>": 50392,
32
+ "<|0.60|>": 50393,
33
+ "<|0.62|>": 50394,
34
+ "<|0.64|>": 50395,
35
+ "<|0.66|>": 50396,
36
+ "<|0.68|>": 50397,
37
+ "<|0.70|>": 50398,
38
+ "<|0.72|>": 50399,
39
+ "<|0.74|>": 50400,
40
+ "<|0.76|>": 50401,
41
+ "<|0.78|>": 50402,
42
+ "<|0.80|>": 50403,
43
+ "<|0.82|>": 50404,
44
+ "<|0.84|>": 50405,
45
+ "<|0.86|>": 50406,
46
+ "<|0.88|>": 50407,
47
+ "<|0.90|>": 50408,
48
+ "<|0.92|>": 50409,
49
+ "<|0.94|>": 50410,
50
+ "<|0.96|>": 50411,
51
+ "<|0.98|>": 50412,
52
+ "<|1.00|>": 50413,
53
+ "<|1.02|>": 50414,
54
+ "<|1.04|>": 50415,
55
+ "<|1.06|>": 50416,
56
+ "<|1.08|>": 50417,
57
+ "<|1.10|>": 50418,
58
+ "<|1.12|>": 50419,
59
+ "<|1.14|>": 50420,
60
+ "<|1.16|>": 50421,
61
+ "<|1.18|>": 50422,
62
+ "<|1.20|>": 50423,
63
+ "<|1.22|>": 50424,
64
+ "<|1.24|>": 50425,
65
+ "<|1.26|>": 50426,
66
+ "<|1.28|>": 50427,
67
+ "<|1.30|>": 50428,
68
+ "<|1.32|>": 50429,
69
+ "<|1.34|>": 50430,
70
+ "<|1.36|>": 50431,
71
+ "<|1.38|>": 50432,
72
+ "<|1.40|>": 50433,
73
+ "<|1.42|>": 50434,
74
+ "<|1.44|>": 50435,
75
+ "<|1.46|>": 50436,
76
+ "<|1.48|>": 50437,
77
+ "<|1.50|>": 50438,
78
+ "<|1.52|>": 50439,
79
+ "<|1.54|>": 50440,
80
+ "<|1.56|>": 50441,
81
+ "<|1.58|>": 50442,
82
+ "<|1.60|>": 50443,
83
+ "<|1.62|>": 50444,
84
+ "<|1.64|>": 50445,
85
+ "<|1.66|>": 50446,
86
+ "<|1.68|>": 50447,
87
+ "<|1.70|>": 50448,
88
+ "<|1.72|>": 50449,
89
+ "<|1.74|>": 50450,
90
+ "<|1.76|>": 50451,
91
+ "<|1.78|>": 50452,
92
+ "<|1.80|>": 50453,
93
+ "<|1.82|>": 50454,
94
+ "<|1.84|>": 50455,
95
+ "<|1.86|>": 50456,
96
+ "<|1.88|>": 50457,
97
+ "<|1.90|>": 50458,
98
+ "<|1.92|>": 50459,
99
+ "<|1.94|>": 50460,
100
+ "<|1.96|>": 50461,
101
+ "<|1.98|>": 50462,
102
+ "<|10.00|>": 50863,
103
+ "<|10.02|>": 50864,
104
+ "<|10.04|>": 50865,
105
+ "<|10.06|>": 50866,
106
+ "<|10.08|>": 50867,
107
+ "<|10.10|>": 50868,
108
+ "<|10.12|>": 50869,
109
+ "<|10.14|>": 50870,
110
+ "<|10.16|>": 50871,
111
+ "<|10.18|>": 50872,
112
+ "<|10.20|>": 50873,
113
+ "<|10.22|>": 50874,
114
+ "<|10.24|>": 50875,
115
+ "<|10.26|>": 50876,
116
+ "<|10.28|>": 50877,
117
+ "<|10.30|>": 50878,
118
+ "<|10.32|>": 50879,
119
+ "<|10.34|>": 50880,
120
+ "<|10.36|>": 50881,
121
+ "<|10.38|>": 50882,
122
+ "<|10.40|>": 50883,
123
+ "<|10.42|>": 50884,
124
+ "<|10.44|>": 50885,
125
+ "<|10.46|>": 50886,
126
+ "<|10.48|>": 50887,
127
+ "<|10.50|>": 50888,
128
+ "<|10.52|>": 50889,
129
+ "<|10.54|>": 50890,
130
+ "<|10.56|>": 50891,
131
+ "<|10.58|>": 50892,
132
+ "<|10.60|>": 50893,
133
+ "<|10.62|>": 50894,
134
+ "<|10.64|>": 50895,
135
+ "<|10.66|>": 50896,
136
+ "<|10.68|>": 50897,
137
+ "<|10.70|>": 50898,
138
+ "<|10.72|>": 50899,
139
+ "<|10.74|>": 50900,
140
+ "<|10.76|>": 50901,
141
+ "<|10.78|>": 50902,
142
+ "<|10.80|>": 50903,
143
+ "<|10.82|>": 50904,
144
+ "<|10.84|>": 50905,
145
+ "<|10.86|>": 50906,
146
+ "<|10.88|>": 50907,
147
+ "<|10.90|>": 50908,
148
+ "<|10.92|>": 50909,
149
+ "<|10.94|>": 50910,
150
+ "<|10.96|>": 50911,
151
+ "<|10.98|>": 50912,
152
+ "<|11.00|>": 50913,
153
+ "<|11.02|>": 50914,
154
+ "<|11.04|>": 50915,
155
+ "<|11.06|>": 50916,
156
+ "<|11.08|>": 50917,
157
+ "<|11.10|>": 50918,
158
+ "<|11.12|>": 50919,
159
+ "<|11.14|>": 50920,
160
+ "<|11.16|>": 50921,
161
+ "<|11.18|>": 50922,
162
+ "<|11.20|>": 50923,
163
+ "<|11.22|>": 50924,
164
+ "<|11.24|>": 50925,
165
+ "<|11.26|>": 50926,
166
+ "<|11.28|>": 50927,
167
+ "<|11.30|>": 50928,
168
+ "<|11.32|>": 50929,
169
+ "<|11.34|>": 50930,
170
+ "<|11.36|>": 50931,
171
+ "<|11.38|>": 50932,
172
+ "<|11.40|>": 50933,
173
+ "<|11.42|>": 50934,
174
+ "<|11.44|>": 50935,
175
+ "<|11.46|>": 50936,
176
+ "<|11.48|>": 50937,
177
+ "<|11.50|>": 50938,
178
+ "<|11.52|>": 50939,
179
+ "<|11.54|>": 50940,
180
+ "<|11.56|>": 50941,
181
+ "<|11.58|>": 50942,
182
+ "<|11.60|>": 50943,
183
+ "<|11.62|>": 50944,
184
+ "<|11.64|>": 50945,
185
+ "<|11.66|>": 50946,
186
+ "<|11.68|>": 50947,
187
+ "<|11.70|>": 50948,
188
+ "<|11.72|>": 50949,
189
+ "<|11.74|>": 50950,
190
+ "<|11.76|>": 50951,
191
+ "<|11.78|>": 50952,
192
+ "<|11.80|>": 50953,
193
+ "<|11.82|>": 50954,
194
+ "<|11.84|>": 50955,
195
+ "<|11.86|>": 50956,
196
+ "<|11.88|>": 50957,
197
+ "<|11.90|>": 50958,
198
+ "<|11.92|>": 50959,
199
+ "<|11.94|>": 50960,
200
+ "<|11.96|>": 50961,
201
+ "<|11.98|>": 50962,
202
+ "<|12.00|>": 50963,
203
+ "<|12.02|>": 50964,
204
+ "<|12.04|>": 50965,
205
+ "<|12.06|>": 50966,
206
+ "<|12.08|>": 50967,
207
+ "<|12.10|>": 50968,
208
+ "<|12.12|>": 50969,
209
+ "<|12.14|>": 50970,
210
+ "<|12.16|>": 50971,
211
+ "<|12.18|>": 50972,
212
+ "<|12.20|>": 50973,
213
+ "<|12.22|>": 50974,
214
+ "<|12.24|>": 50975,
215
+ "<|12.26|>": 50976,
216
+ "<|12.28|>": 50977,
217
+ "<|12.30|>": 50978,
218
+ "<|12.32|>": 50979,
219
+ "<|12.34|>": 50980,
220
+ "<|12.36|>": 50981,
221
+ "<|12.38|>": 50982,
222
+ "<|12.40|>": 50983,
223
+ "<|12.42|>": 50984,
224
+ "<|12.44|>": 50985,
225
+ "<|12.46|>": 50986,
226
+ "<|12.48|>": 50987,
227
+ "<|12.50|>": 50988,
228
+ "<|12.52|>": 50989,
229
+ "<|12.54|>": 50990,
230
+ "<|12.56|>": 50991,
231
+ "<|12.58|>": 50992,
232
+ "<|12.60|>": 50993,
233
+ "<|12.62|>": 50994,
234
+ "<|12.64|>": 50995,
235
+ "<|12.66|>": 50996,
236
+ "<|12.68|>": 50997,
237
+ "<|12.70|>": 50998,
238
+ "<|12.72|>": 50999,
239
+ "<|12.74|>": 51000,
240
+ "<|12.76|>": 51001,
241
+ "<|12.78|>": 51002,
242
+ "<|12.80|>": 51003,
243
+ "<|12.82|>": 51004,
244
+ "<|12.84|>": 51005,
245
+ "<|12.86|>": 51006,
246
+ "<|12.88|>": 51007,
247
+ "<|12.90|>": 51008,
248
+ "<|12.92|>": 51009,
249
+ "<|12.94|>": 51010,
250
+ "<|12.96|>": 51011,
251
+ "<|12.98|>": 51012,
252
+ "<|13.00|>": 51013,
253
+ "<|13.02|>": 51014,
254
+ "<|13.04|>": 51015,
255
+ "<|13.06|>": 51016,
256
+ "<|13.08|>": 51017,
257
+ "<|13.10|>": 51018,
258
+ "<|13.12|>": 51019,
259
+ "<|13.14|>": 51020,
260
+ "<|13.16|>": 51021,
261
+ "<|13.18|>": 51022,
262
+ "<|13.20|>": 51023,
263
+ "<|13.22|>": 51024,
264
+ "<|13.24|>": 51025,
265
+ "<|13.26|>": 51026,
266
+ "<|13.28|>": 51027,
267
+ "<|13.30|>": 51028,
268
+ "<|13.32|>": 51029,
269
+ "<|13.34|>": 51030,
270
+ "<|13.36|>": 51031,
271
+ "<|13.38|>": 51032,
272
+ "<|13.40|>": 51033,
273
+ "<|13.42|>": 51034,
274
+ "<|13.44|>": 51035,
275
+ "<|13.46|>": 51036,
276
+ "<|13.48|>": 51037,
277
+ "<|13.50|>": 51038,
278
+ "<|13.52|>": 51039,
279
+ "<|13.54|>": 51040,
280
+ "<|13.56|>": 51041,
281
+ "<|13.58|>": 51042,
282
+ "<|13.60|>": 51043,
283
+ "<|13.62|>": 51044,
284
+ "<|13.64|>": 51045,
285
+ "<|13.66|>": 51046,
286
+ "<|13.68|>": 51047,
287
+ "<|13.70|>": 51048,
288
+ "<|13.72|>": 51049,
289
+ "<|13.74|>": 51050,
290
+ "<|13.76|>": 51051,
291
+ "<|13.78|>": 51052,
292
+ "<|13.80|>": 51053,
293
+ "<|13.82|>": 51054,
294
+ "<|13.84|>": 51055,
295
+ "<|13.86|>": 51056,
296
+ "<|13.88|>": 51057,
297
+ "<|13.90|>": 51058,
298
+ "<|13.92|>": 51059,
299
+ "<|13.94|>": 51060,
300
+ "<|13.96|>": 51061,
301
+ "<|13.98|>": 51062,
302
+ "<|14.00|>": 51063,
303
+ "<|14.02|>": 51064,
304
+ "<|14.04|>": 51065,
305
+ "<|14.06|>": 51066,
306
+ "<|14.08|>": 51067,
307
+ "<|14.10|>": 51068,
308
+ "<|14.12|>": 51069,
309
+ "<|14.14|>": 51070,
310
+ "<|14.16|>": 51071,
311
+ "<|14.18|>": 51072,
312
+ "<|14.20|>": 51073,
313
+ "<|14.22|>": 51074,
314
+ "<|14.24|>": 51075,
315
+ "<|14.26|>": 51076,
316
+ "<|14.28|>": 51077,
317
+ "<|14.30|>": 51078,
318
+ "<|14.32|>": 51079,
319
+ "<|14.34|>": 51080,
320
+ "<|14.36|>": 51081,
321
+ "<|14.38|>": 51082,
322
+ "<|14.40|>": 51083,
323
+ "<|14.42|>": 51084,
324
+ "<|14.44|>": 51085,
325
+ "<|14.46|>": 51086,
326
+ "<|14.48|>": 51087,
327
+ "<|14.50|>": 51088,
328
+ "<|14.52|>": 51089,
329
+ "<|14.54|>": 51090,
330
+ "<|14.56|>": 51091,
331
+ "<|14.58|>": 51092,
332
+ "<|14.60|>": 51093,
333
+ "<|14.62|>": 51094,
334
+ "<|14.64|>": 51095,
335
+ "<|14.66|>": 51096,
336
+ "<|14.68|>": 51097,
337
+ "<|14.70|>": 51098,
338
+ "<|14.72|>": 51099,
339
+ "<|14.74|>": 51100,
340
+ "<|14.76|>": 51101,
341
+ "<|14.78|>": 51102,
342
+ "<|14.80|>": 51103,
343
+ "<|14.82|>": 51104,
344
+ "<|14.84|>": 51105,
345
+ "<|14.86|>": 51106,
346
+ "<|14.88|>": 51107,
347
+ "<|14.90|>": 51108,
348
+ "<|14.92|>": 51109,
349
+ "<|14.94|>": 51110,
350
+ "<|14.96|>": 51111,
351
+ "<|14.98|>": 51112,
352
+ "<|15.00|>": 51113,
353
+ "<|15.02|>": 51114,
354
+ "<|15.04|>": 51115,
355
+ "<|15.06|>": 51116,
356
+ "<|15.08|>": 51117,
357
+ "<|15.10|>": 51118,
358
+ "<|15.12|>": 51119,
359
+ "<|15.14|>": 51120,
360
+ "<|15.16|>": 51121,
361
+ "<|15.18|>": 51122,
362
+ "<|15.20|>": 51123,
363
+ "<|15.22|>": 51124,
364
+ "<|15.24|>": 51125,
365
+ "<|15.26|>": 51126,
366
+ "<|15.28|>": 51127,
367
+ "<|15.30|>": 51128,
368
+ "<|15.32|>": 51129,
369
+ "<|15.34|>": 51130,
370
+ "<|15.36|>": 51131,
371
+ "<|15.38|>": 51132,
372
+ "<|15.40|>": 51133,
373
+ "<|15.42|>": 51134,
374
+ "<|15.44|>": 51135,
375
+ "<|15.46|>": 51136,
376
+ "<|15.48|>": 51137,
377
+ "<|15.50|>": 51138,
378
+ "<|15.52|>": 51139,
379
+ "<|15.54|>": 51140,
380
+ "<|15.56|>": 51141,
381
+ "<|15.58|>": 51142,
382
+ "<|15.60|>": 51143,
383
+ "<|15.62|>": 51144,
384
+ "<|15.64|>": 51145,
385
+ "<|15.66|>": 51146,
386
+ "<|15.68|>": 51147,
387
+ "<|15.70|>": 51148,
388
+ "<|15.72|>": 51149,
389
+ "<|15.74|>": 51150,
390
+ "<|15.76|>": 51151,
391
+ "<|15.78|>": 51152,
392
+ "<|15.80|>": 51153,
393
+ "<|15.82|>": 51154,
394
+ "<|15.84|>": 51155,
395
+ "<|15.86|>": 51156,
396
+ "<|15.88|>": 51157,
397
+ "<|15.90|>": 51158,
398
+ "<|15.92|>": 51159,
399
+ "<|15.94|>": 51160,
400
+ "<|15.96|>": 51161,
401
+ "<|15.98|>": 51162,
402
+ "<|16.00|>": 51163,
403
+ "<|16.02|>": 51164,
404
+ "<|16.04|>": 51165,
405
+ "<|16.06|>": 51166,
406
+ "<|16.08|>": 51167,
407
+ "<|16.10|>": 51168,
408
+ "<|16.12|>": 51169,
409
+ "<|16.14|>": 51170,
410
+ "<|16.16|>": 51171,
411
+ "<|16.18|>": 51172,
412
+ "<|16.20|>": 51173,
413
+ "<|16.22|>": 51174,
414
+ "<|16.24|>": 51175,
415
+ "<|16.26|>": 51176,
416
+ "<|16.28|>": 51177,
417
+ "<|16.30|>": 51178,
418
+ "<|16.32|>": 51179,
419
+ "<|16.34|>": 51180,
420
+ "<|16.36|>": 51181,
421
+ "<|16.38|>": 51182,
422
+ "<|16.40|>": 51183,
423
+ "<|16.42|>": 51184,
424
+ "<|16.44|>": 51185,
425
+ "<|16.46|>": 51186,
426
+ "<|16.48|>": 51187,
427
+ "<|16.50|>": 51188,
428
+ "<|16.52|>": 51189,
429
+ "<|16.54|>": 51190,
430
+ "<|16.56|>": 51191,
431
+ "<|16.58|>": 51192,
432
+ "<|16.60|>": 51193,
433
+ "<|16.62|>": 51194,
434
+ "<|16.64|>": 51195,
435
+ "<|16.66|>": 51196,
436
+ "<|16.68|>": 51197,
437
+ "<|16.70|>": 51198,
438
+ "<|16.72|>": 51199,
439
+ "<|16.74|>": 51200,
440
+ "<|16.76|>": 51201,
441
+ "<|16.78|>": 51202,
442
+ "<|16.80|>": 51203,
443
+ "<|16.82|>": 51204,
444
+ "<|16.84|>": 51205,
445
+ "<|16.86|>": 51206,
446
+ "<|16.88|>": 51207,
447
+ "<|16.90|>": 51208,
448
+ "<|16.92|>": 51209,
449
+ "<|16.94|>": 51210,
450
+ "<|16.96|>": 51211,
451
+ "<|16.98|>": 51212,
452
+ "<|17.00|>": 51213,
453
+ "<|17.02|>": 51214,
454
+ "<|17.04|>": 51215,
455
+ "<|17.06|>": 51216,
456
+ "<|17.08|>": 51217,
457
+ "<|17.10|>": 51218,
458
+ "<|17.12|>": 51219,
459
+ "<|17.14|>": 51220,
460
+ "<|17.16|>": 51221,
461
+ "<|17.18|>": 51222,
462
+ "<|17.20|>": 51223,
463
+ "<|17.22|>": 51224,
464
+ "<|17.24|>": 51225,
465
+ "<|17.26|>": 51226,
466
+ "<|17.28|>": 51227,
467
+ "<|17.30|>": 51228,
468
+ "<|17.32|>": 51229,
469
+ "<|17.34|>": 51230,
470
+ "<|17.36|>": 51231,
471
+ "<|17.38|>": 51232,
472
+ "<|17.40|>": 51233,
473
+ "<|17.42|>": 51234,
474
+ "<|17.44|>": 51235,
475
+ "<|17.46|>": 51236,
476
+ "<|17.48|>": 51237,
477
+ "<|17.50|>": 51238,
478
+ "<|17.52|>": 51239,
479
+ "<|17.54|>": 51240,
480
+ "<|17.56|>": 51241,
481
+ "<|17.58|>": 51242,
482
+ "<|17.60|>": 51243,
483
+ "<|17.62|>": 51244,
484
+ "<|17.64|>": 51245,
485
+ "<|17.66|>": 51246,
486
+ "<|17.68|>": 51247,
487
+ "<|17.70|>": 51248,
488
+ "<|17.72|>": 51249,
489
+ "<|17.74|>": 51250,
490
+ "<|17.76|>": 51251,
491
+ "<|17.78|>": 51252,
492
+ "<|17.80|>": 51253,
493
+ "<|17.82|>": 51254,
494
+ "<|17.84|>": 51255,
495
+ "<|17.86|>": 51256,
496
+ "<|17.88|>": 51257,
497
+ "<|17.90|>": 51258,
498
+ "<|17.92|>": 51259,
499
+ "<|17.94|>": 51260,
500
+ "<|17.96|>": 51261,
501
+ "<|17.98|>": 51262,
502
+ "<|18.00|>": 51263,
503
+ "<|18.02|>": 51264,
504
+ "<|18.04|>": 51265,
505
+ "<|18.06|>": 51266,
506
+ "<|18.08|>": 51267,
507
+ "<|18.10|>": 51268,
508
+ "<|18.12|>": 51269,
509
+ "<|18.14|>": 51270,
510
+ "<|18.16|>": 51271,
511
+ "<|18.18|>": 51272,
512
+ "<|18.20|>": 51273,
513
+ "<|18.22|>": 51274,
514
+ "<|18.24|>": 51275,
515
+ "<|18.26|>": 51276,
516
+ "<|18.28|>": 51277,
517
+ "<|18.30|>": 51278,
518
+ "<|18.32|>": 51279,
519
+ "<|18.34|>": 51280,
520
+ "<|18.36|>": 51281,
521
+ "<|18.38|>": 51282,
522
+ "<|18.40|>": 51283,
523
+ "<|18.42|>": 51284,
524
+ "<|18.44|>": 51285,
525
+ "<|18.46|>": 51286,
526
+ "<|18.48|>": 51287,
527
+ "<|18.50|>": 51288,
528
+ "<|18.52|>": 51289,
529
+ "<|18.54|>": 51290,
530
+ "<|18.56|>": 51291,
531
+ "<|18.58|>": 51292,
532
+ "<|18.60|>": 51293,
533
+ "<|18.62|>": 51294,
534
+ "<|18.64|>": 51295,
535
+ "<|18.66|>": 51296,
536
+ "<|18.68|>": 51297,
537
+ "<|18.70|>": 51298,
538
+ "<|18.72|>": 51299,
539
+ "<|18.74|>": 51300,
540
+ "<|18.76|>": 51301,
541
+ "<|18.78|>": 51302,
542
+ "<|18.80|>": 51303,
543
+ "<|18.82|>": 51304,
544
+ "<|18.84|>": 51305,
545
+ "<|18.86|>": 51306,
546
+ "<|18.88|>": 51307,
547
+ "<|18.90|>": 51308,
548
+ "<|18.92|>": 51309,
549
+ "<|18.94|>": 51310,
550
+ "<|18.96|>": 51311,
551
+ "<|18.98|>": 51312,
552
+ "<|19.00|>": 51313,
553
+ "<|19.02|>": 51314,
554
+ "<|19.04|>": 51315,
555
+ "<|19.06|>": 51316,
556
+ "<|19.08|>": 51317,
557
+ "<|19.10|>": 51318,
558
+ "<|19.12|>": 51319,
559
+ "<|19.14|>": 51320,
560
+ "<|19.16|>": 51321,
561
+ "<|19.18|>": 51322,
562
+ "<|19.20|>": 51323,
563
+ "<|19.22|>": 51324,
564
+ "<|19.24|>": 51325,
565
+ "<|19.26|>": 51326,
566
+ "<|19.28|>": 51327,
567
+ "<|19.30|>": 51328,
568
+ "<|19.32|>": 51329,
569
+ "<|19.34|>": 51330,
570
+ "<|19.36|>": 51331,
571
+ "<|19.38|>": 51332,
572
+ "<|19.40|>": 51333,
573
+ "<|19.42|>": 51334,
574
+ "<|19.44|>": 51335,
575
+ "<|19.46|>": 51336,
576
+ "<|19.48|>": 51337,
577
+ "<|19.50|>": 51338,
578
+ "<|19.52|>": 51339,
579
+ "<|19.54|>": 51340,
580
+ "<|19.56|>": 51341,
581
+ "<|19.58|>": 51342,
582
+ "<|19.60|>": 51343,
583
+ "<|19.62|>": 51344,
584
+ "<|19.64|>": 51345,
585
+ "<|19.66|>": 51346,
586
+ "<|19.68|>": 51347,
587
+ "<|19.70|>": 51348,
588
+ "<|19.72|>": 51349,
589
+ "<|19.74|>": 51350,
590
+ "<|19.76|>": 51351,
591
+ "<|19.78|>": 51352,
592
+ "<|19.80|>": 51353,
593
+ "<|19.82|>": 51354,
594
+ "<|19.84|>": 51355,
595
+ "<|19.86|>": 51356,
596
+ "<|19.88|>": 51357,
597
+ "<|19.90|>": 51358,
598
+ "<|19.92|>": 51359,
599
+ "<|19.94|>": 51360,
600
+ "<|19.96|>": 51361,
601
+ "<|19.98|>": 51362,
602
+ "<|2.00|>": 50463,
603
+ "<|2.02|>": 50464,
604
+ "<|2.04|>": 50465,
605
+ "<|2.06|>": 50466,
606
+ "<|2.08|>": 50467,
607
+ "<|2.10|>": 50468,
608
+ "<|2.12|>": 50469,
609
+ "<|2.14|>": 50470,
610
+ "<|2.16|>": 50471,
611
+ "<|2.18|>": 50472,
612
+ "<|2.20|>": 50473,
613
+ "<|2.22|>": 50474,
614
+ "<|2.24|>": 50475,
615
+ "<|2.26|>": 50476,
616
+ "<|2.28|>": 50477,
617
+ "<|2.30|>": 50478,
618
+ "<|2.32|>": 50479,
619
+ "<|2.34|>": 50480,
620
+ "<|2.36|>": 50481,
621
+ "<|2.38|>": 50482,
622
+ "<|2.40|>": 50483,
623
+ "<|2.42|>": 50484,
624
+ "<|2.44|>": 50485,
625
+ "<|2.46|>": 50486,
626
+ "<|2.48|>": 50487,
627
+ "<|2.50|>": 50488,
628
+ "<|2.52|>": 50489,
629
+ "<|2.54|>": 50490,
630
+ "<|2.56|>": 50491,
631
+ "<|2.58|>": 50492,
632
+ "<|2.60|>": 50493,
633
+ "<|2.62|>": 50494,
634
+ "<|2.64|>": 50495,
635
+ "<|2.66|>": 50496,
636
+ "<|2.68|>": 50497,
637
+ "<|2.70|>": 50498,
638
+ "<|2.72|>": 50499,
639
+ "<|2.74|>": 50500,
640
+ "<|2.76|>": 50501,
641
+ "<|2.78|>": 50502,
642
+ "<|2.80|>": 50503,
643
+ "<|2.82|>": 50504,
644
+ "<|2.84|>": 50505,
645
+ "<|2.86|>": 50506,
646
+ "<|2.88|>": 50507,
647
+ "<|2.90|>": 50508,
648
+ "<|2.92|>": 50509,
649
+ "<|2.94|>": 50510,
650
+ "<|2.96|>": 50511,
651
+ "<|2.98|>": 50512,
652
+ "<|20.00|>": 51363,
653
+ "<|20.02|>": 51364,
654
+ "<|20.04|>": 51365,
655
+ "<|20.06|>": 51366,
656
+ "<|20.08|>": 51367,
657
+ "<|20.10|>": 51368,
658
+ "<|20.12|>": 51369,
659
+ "<|20.14|>": 51370,
660
+ "<|20.16|>": 51371,
661
+ "<|20.18|>": 51372,
662
+ "<|20.20|>": 51373,
663
+ "<|20.22|>": 51374,
664
+ "<|20.24|>": 51375,
665
+ "<|20.26|>": 51376,
666
+ "<|20.28|>": 51377,
667
+ "<|20.30|>": 51378,
668
+ "<|20.32|>": 51379,
669
+ "<|20.34|>": 51380,
670
+ "<|20.36|>": 51381,
671
+ "<|20.38|>": 51382,
672
+ "<|20.40|>": 51383,
673
+ "<|20.42|>": 51384,
674
+ "<|20.44|>": 51385,
675
+ "<|20.46|>": 51386,
676
+ "<|20.48|>": 51387,
677
+ "<|20.50|>": 51388,
678
+ "<|20.52|>": 51389,
679
+ "<|20.54|>": 51390,
680
+ "<|20.56|>": 51391,
681
+ "<|20.58|>": 51392,
682
+ "<|20.60|>": 51393,
683
+ "<|20.62|>": 51394,
684
+ "<|20.64|>": 51395,
685
+ "<|20.66|>": 51396,
686
+ "<|20.68|>": 51397,
687
+ "<|20.70|>": 51398,
688
+ "<|20.72|>": 51399,
689
+ "<|20.74|>": 51400,
690
+ "<|20.76|>": 51401,
691
+ "<|20.78|>": 51402,
692
+ "<|20.80|>": 51403,
693
+ "<|20.82|>": 51404,
694
+ "<|20.84|>": 51405,
695
+ "<|20.86|>": 51406,
696
+ "<|20.88|>": 51407,
697
+ "<|20.90|>": 51408,
698
+ "<|20.92|>": 51409,
699
+ "<|20.94|>": 51410,
700
+ "<|20.96|>": 51411,
701
+ "<|20.98|>": 51412,
702
+ "<|21.00|>": 51413,
703
+ "<|21.02|>": 51414,
704
+ "<|21.04|>": 51415,
705
+ "<|21.06|>": 51416,
706
+ "<|21.08|>": 51417,
707
+ "<|21.10|>": 51418,
708
+ "<|21.12|>": 51419,
709
+ "<|21.14|>": 51420,
710
+ "<|21.16|>": 51421,
711
+ "<|21.18|>": 51422,
712
+ "<|21.20|>": 51423,
713
+ "<|21.22|>": 51424,
714
+ "<|21.24|>": 51425,
715
+ "<|21.26|>": 51426,
716
+ "<|21.28|>": 51427,
717
+ "<|21.30|>": 51428,
718
+ "<|21.32|>": 51429,
719
+ "<|21.34|>": 51430,
720
+ "<|21.36|>": 51431,
721
+ "<|21.38|>": 51432,
722
+ "<|21.40|>": 51433,
723
+ "<|21.42|>": 51434,
724
+ "<|21.44|>": 51435,
725
+ "<|21.46|>": 51436,
726
+ "<|21.48|>": 51437,
727
+ "<|21.50|>": 51438,
728
+ "<|21.52|>": 51439,
729
+ "<|21.54|>": 51440,
730
+ "<|21.56|>": 51441,
731
+ "<|21.58|>": 51442,
732
+ "<|21.60|>": 51443,
733
+ "<|21.62|>": 51444,
734
+ "<|21.64|>": 51445,
735
+ "<|21.66|>": 51446,
736
+ "<|21.68|>": 51447,
737
+ "<|21.70|>": 51448,
738
+ "<|21.72|>": 51449,
739
+ "<|21.74|>": 51450,
740
+ "<|21.76|>": 51451,
741
+ "<|21.78|>": 51452,
742
+ "<|21.80|>": 51453,
743
+ "<|21.82|>": 51454,
744
+ "<|21.84|>": 51455,
745
+ "<|21.86|>": 51456,
746
+ "<|21.88|>": 51457,
747
+ "<|21.90|>": 51458,
748
+ "<|21.92|>": 51459,
749
+ "<|21.94|>": 51460,
750
+ "<|21.96|>": 51461,
751
+ "<|21.98|>": 51462,
752
+ "<|22.00|>": 51463,
753
+ "<|22.02|>": 51464,
754
+ "<|22.04|>": 51465,
755
+ "<|22.06|>": 51466,
756
+ "<|22.08|>": 51467,
757
+ "<|22.10|>": 51468,
758
+ "<|22.12|>": 51469,
759
+ "<|22.14|>": 51470,
760
+ "<|22.16|>": 51471,
761
+ "<|22.18|>": 51472,
762
+ "<|22.20|>": 51473,
763
+ "<|22.22|>": 51474,
764
+ "<|22.24|>": 51475,
765
+ "<|22.26|>": 51476,
766
+ "<|22.28|>": 51477,
767
+ "<|22.30|>": 51478,
768
+ "<|22.32|>": 51479,
769
+ "<|22.34|>": 51480,
770
+ "<|22.36|>": 51481,
771
+ "<|22.38|>": 51482,
772
+ "<|22.40|>": 51483,
773
+ "<|22.42|>": 51484,
774
+ "<|22.44|>": 51485,
775
+ "<|22.46|>": 51486,
776
+ "<|22.48|>": 51487,
777
+ "<|22.50|>": 51488,
778
+ "<|22.52|>": 51489,
779
+ "<|22.54|>": 51490,
780
+ "<|22.56|>": 51491,
781
+ "<|22.58|>": 51492,
782
+ "<|22.60|>": 51493,
783
+ "<|22.62|>": 51494,
784
+ "<|22.64|>": 51495,
785
+ "<|22.66|>": 51496,
786
+ "<|22.68|>": 51497,
787
+ "<|22.70|>": 51498,
788
+ "<|22.72|>": 51499,
789
+ "<|22.74|>": 51500,
790
+ "<|22.76|>": 51501,
791
+ "<|22.78|>": 51502,
792
+ "<|22.80|>": 51503,
793
+ "<|22.82|>": 51504,
794
+ "<|22.84|>": 51505,
795
+ "<|22.86|>": 51506,
796
+ "<|22.88|>": 51507,
797
+ "<|22.90|>": 51508,
798
+ "<|22.92|>": 51509,
799
+ "<|22.94|>": 51510,
800
+ "<|22.96|>": 51511,
801
+ "<|22.98|>": 51512,
802
+ "<|23.00|>": 51513,
803
+ "<|23.02|>": 51514,
804
+ "<|23.04|>": 51515,
805
+ "<|23.06|>": 51516,
806
+ "<|23.08|>": 51517,
807
+ "<|23.10|>": 51518,
808
+ "<|23.12|>": 51519,
809
+ "<|23.14|>": 51520,
810
+ "<|23.16|>": 51521,
811
+ "<|23.18|>": 51522,
812
+ "<|23.20|>": 51523,
813
+ "<|23.22|>": 51524,
814
+ "<|23.24|>": 51525,
815
+ "<|23.26|>": 51526,
816
+ "<|23.28|>": 51527,
817
+ "<|23.30|>": 51528,
818
+ "<|23.32|>": 51529,
819
+ "<|23.34|>": 51530,
820
+ "<|23.36|>": 51531,
821
+ "<|23.38|>": 51532,
822
+ "<|23.40|>": 51533,
823
+ "<|23.42|>": 51534,
824
+ "<|23.44|>": 51535,
825
+ "<|23.46|>": 51536,
826
+ "<|23.48|>": 51537,
827
+ "<|23.50|>": 51538,
828
+ "<|23.52|>": 51539,
829
+ "<|23.54|>": 51540,
830
+ "<|23.56|>": 51541,
831
+ "<|23.58|>": 51542,
832
+ "<|23.60|>": 51543,
833
+ "<|23.62|>": 51544,
834
+ "<|23.64|>": 51545,
835
+ "<|23.66|>": 51546,
836
+ "<|23.68|>": 51547,
837
+ "<|23.70|>": 51548,
838
+ "<|23.72|>": 51549,
839
+ "<|23.74|>": 51550,
840
+ "<|23.76|>": 51551,
841
+ "<|23.78|>": 51552,
842
+ "<|23.80|>": 51553,
843
+ "<|23.82|>": 51554,
844
+ "<|23.84|>": 51555,
845
+ "<|23.86|>": 51556,
846
+ "<|23.88|>": 51557,
847
+ "<|23.90|>": 51558,
848
+ "<|23.92|>": 51559,
849
+ "<|23.94|>": 51560,
850
+ "<|23.96|>": 51561,
851
+ "<|23.98|>": 51562,
852
+ "<|24.00|>": 51563,
853
+ "<|24.02|>": 51564,
854
+ "<|24.04|>": 51565,
855
+ "<|24.06|>": 51566,
856
+ "<|24.08|>": 51567,
857
+ "<|24.10|>": 51568,
858
+ "<|24.12|>": 51569,
859
+ "<|24.14|>": 51570,
860
+ "<|24.16|>": 51571,
861
+ "<|24.18|>": 51572,
862
+ "<|24.20|>": 51573,
863
+ "<|24.22|>": 51574,
864
+ "<|24.24|>": 51575,
865
+ "<|24.26|>": 51576,
866
+ "<|24.28|>": 51577,
867
+ "<|24.30|>": 51578,
868
+ "<|24.32|>": 51579,
869
+ "<|24.34|>": 51580,
870
+ "<|24.36|>": 51581,
871
+ "<|24.38|>": 51582,
872
+ "<|24.40|>": 51583,
873
+ "<|24.42|>": 51584,
874
+ "<|24.44|>": 51585,
875
+ "<|24.46|>": 51586,
876
+ "<|24.48|>": 51587,
877
+ "<|24.50|>": 51588,
878
+ "<|24.52|>": 51589,
879
+ "<|24.54|>": 51590,
880
+ "<|24.56|>": 51591,
881
+ "<|24.58|>": 51592,
882
+ "<|24.60|>": 51593,
883
+ "<|24.62|>": 51594,
884
+ "<|24.64|>": 51595,
885
+ "<|24.66|>": 51596,
886
+ "<|24.68|>": 51597,
887
+ "<|24.70|>": 51598,
888
+ "<|24.72|>": 51599,
889
+ "<|24.74|>": 51600,
890
+ "<|24.76|>": 51601,
891
+ "<|24.78|>": 51602,
892
+ "<|24.80|>": 51603,
893
+ "<|24.82|>": 51604,
894
+ "<|24.84|>": 51605,
895
+ "<|24.86|>": 51606,
896
+ "<|24.88|>": 51607,
897
+ "<|24.90|>": 51608,
898
+ "<|24.92|>": 51609,
899
+ "<|24.94|>": 51610,
900
+ "<|24.96|>": 51611,
901
+ "<|24.98|>": 51612,
902
+ "<|25.00|>": 51613,
903
+ "<|25.02|>": 51614,
904
+ "<|25.04|>": 51615,
905
+ "<|25.06|>": 51616,
906
+ "<|25.08|>": 51617,
907
+ "<|25.10|>": 51618,
908
+ "<|25.12|>": 51619,
909
+ "<|25.14|>": 51620,
910
+ "<|25.16|>": 51621,
911
+ "<|25.18|>": 51622,
912
+ "<|25.20|>": 51623,
913
+ "<|25.22|>": 51624,
914
+ "<|25.24|>": 51625,
915
+ "<|25.26|>": 51626,
916
+ "<|25.28|>": 51627,
917
+ "<|25.30|>": 51628,
918
+ "<|25.32|>": 51629,
919
+ "<|25.34|>": 51630,
920
+ "<|25.36|>": 51631,
921
+ "<|25.38|>": 51632,
922
+ "<|25.40|>": 51633,
923
+ "<|25.42|>": 51634,
924
+ "<|25.44|>": 51635,
925
+ "<|25.46|>": 51636,
926
+ "<|25.48|>": 51637,
927
+ "<|25.50|>": 51638,
928
+ "<|25.52|>": 51639,
929
+ "<|25.54|>": 51640,
930
+ "<|25.56|>": 51641,
931
+ "<|25.58|>": 51642,
932
+ "<|25.60|>": 51643,
933
+ "<|25.62|>": 51644,
934
+ "<|25.64|>": 51645,
935
+ "<|25.66|>": 51646,
936
+ "<|25.68|>": 51647,
937
+ "<|25.70|>": 51648,
938
+ "<|25.72|>": 51649,
939
+ "<|25.74|>": 51650,
940
+ "<|25.76|>": 51651,
941
+ "<|25.78|>": 51652,
942
+ "<|25.80|>": 51653,
943
+ "<|25.82|>": 51654,
944
+ "<|25.84|>": 51655,
945
+ "<|25.86|>": 51656,
946
+ "<|25.88|>": 51657,
947
+ "<|25.90|>": 51658,
948
+ "<|25.92|>": 51659,
949
+ "<|25.94|>": 51660,
950
+ "<|25.96|>": 51661,
951
+ "<|25.98|>": 51662,
952
+ "<|26.00|>": 51663,
953
+ "<|26.02|>": 51664,
954
+ "<|26.04|>": 51665,
955
+ "<|26.06|>": 51666,
956
+ "<|26.08|>": 51667,
957
+ "<|26.10|>": 51668,
958
+ "<|26.12|>": 51669,
959
+ "<|26.14|>": 51670,
960
+ "<|26.16|>": 51671,
961
+ "<|26.18|>": 51672,
962
+ "<|26.20|>": 51673,
963
+ "<|26.22|>": 51674,
964
+ "<|26.24|>": 51675,
965
+ "<|26.26|>": 51676,
966
+ "<|26.28|>": 51677,
967
+ "<|26.30|>": 51678,
968
+ "<|26.32|>": 51679,
969
+ "<|26.34|>": 51680,
970
+ "<|26.36|>": 51681,
971
+ "<|26.38|>": 51682,
972
+ "<|26.40|>": 51683,
973
+ "<|26.42|>": 51684,
974
+ "<|26.44|>": 51685,
975
+ "<|26.46|>": 51686,
976
+ "<|26.48|>": 51687,
977
+ "<|26.50|>": 51688,
978
+ "<|26.52|>": 51689,
979
+ "<|26.54|>": 51690,
980
+ "<|26.56|>": 51691,
981
+ "<|26.58|>": 51692,
982
+ "<|26.60|>": 51693,
983
+ "<|26.62|>": 51694,
984
+ "<|26.64|>": 51695,
985
+ "<|26.66|>": 51696,
986
+ "<|26.68|>": 51697,
987
+ "<|26.70|>": 51698,
988
+ "<|26.72|>": 51699,
989
+ "<|26.74|>": 51700,
990
+ "<|26.76|>": 51701,
991
+ "<|26.78|>": 51702,
992
+ "<|26.80|>": 51703,
993
+ "<|26.82|>": 51704,
994
+ "<|26.84|>": 51705,
995
+ "<|26.86|>": 51706,
996
+ "<|26.88|>": 51707,
997
+ "<|26.90|>": 51708,
998
+ "<|26.92|>": 51709,
999
+ "<|26.94|>": 51710,
1000
+ "<|26.96|>": 51711,
1001
+ "<|26.98|>": 51712,
1002
+ "<|27.00|>": 51713,
1003
+ "<|27.02|>": 51714,
1004
+ "<|27.04|>": 51715,
1005
+ "<|27.06|>": 51716,
1006
+ "<|27.08|>": 51717,
1007
+ "<|27.10|>": 51718,
1008
+ "<|27.12|>": 51719,
1009
+ "<|27.14|>": 51720,
1010
+ "<|27.16|>": 51721,
1011
+ "<|27.18|>": 51722,
1012
+ "<|27.20|>": 51723,
1013
+ "<|27.22|>": 51724,
1014
+ "<|27.24|>": 51725,
1015
+ "<|27.26|>": 51726,
1016
+ "<|27.28|>": 51727,
1017
+ "<|27.30|>": 51728,
1018
+ "<|27.32|>": 51729,
1019
+ "<|27.34|>": 51730,
1020
+ "<|27.36|>": 51731,
1021
+ "<|27.38|>": 51732,
1022
+ "<|27.40|>": 51733,
1023
+ "<|27.42|>": 51734,
1024
+ "<|27.44|>": 51735,
1025
+ "<|27.46|>": 51736,
1026
+ "<|27.48|>": 51737,
1027
+ "<|27.50|>": 51738,
1028
+ "<|27.52|>": 51739,
1029
+ "<|27.54|>": 51740,
1030
+ "<|27.56|>": 51741,
1031
+ "<|27.58|>": 51742,
1032
+ "<|27.60|>": 51743,
1033
+ "<|27.62|>": 51744,
1034
+ "<|27.64|>": 51745,
1035
+ "<|27.66|>": 51746,
1036
+ "<|27.68|>": 51747,
1037
+ "<|27.70|>": 51748,
1038
+ "<|27.72|>": 51749,
1039
+ "<|27.74|>": 51750,
1040
+ "<|27.76|>": 51751,
1041
+ "<|27.78|>": 51752,
1042
+ "<|27.80|>": 51753,
1043
+ "<|27.82|>": 51754,
1044
+ "<|27.84|>": 51755,
1045
+ "<|27.86|>": 51756,
1046
+ "<|27.88|>": 51757,
1047
+ "<|27.90|>": 51758,
1048
+ "<|27.92|>": 51759,
1049
+ "<|27.94|>": 51760,
1050
+ "<|27.96|>": 51761,
1051
+ "<|27.98|>": 51762,
1052
+ "<|28.00|>": 51763,
1053
+ "<|28.02|>": 51764,
1054
+ "<|28.04|>": 51765,
1055
+ "<|28.06|>": 51766,
1056
+ "<|28.08|>": 51767,
1057
+ "<|28.10|>": 51768,
1058
+ "<|28.12|>": 51769,
1059
+ "<|28.14|>": 51770,
1060
+ "<|28.16|>": 51771,
1061
+ "<|28.18|>": 51772,
1062
+ "<|28.20|>": 51773,
1063
+ "<|28.22|>": 51774,
1064
+ "<|28.24|>": 51775,
1065
+ "<|28.26|>": 51776,
1066
+ "<|28.28|>": 51777,
1067
+ "<|28.30|>": 51778,
1068
+ "<|28.32|>": 51779,
1069
+ "<|28.34|>": 51780,
1070
+ "<|28.36|>": 51781,
1071
+ "<|28.38|>": 51782,
1072
+ "<|28.40|>": 51783,
1073
+ "<|28.42|>": 51784,
1074
+ "<|28.44|>": 51785,
1075
+ "<|28.46|>": 51786,
1076
+ "<|28.48|>": 51787,
1077
+ "<|28.50|>": 51788,
1078
+ "<|28.52|>": 51789,
1079
+ "<|28.54|>": 51790,
1080
+ "<|28.56|>": 51791,
1081
+ "<|28.58|>": 51792,
1082
+ "<|28.60|>": 51793,
1083
+ "<|28.62|>": 51794,
1084
+ "<|28.64|>": 51795,
1085
+ "<|28.66|>": 51796,
1086
+ "<|28.68|>": 51797,
1087
+ "<|28.70|>": 51798,
1088
+ "<|28.72|>": 51799,
1089
+ "<|28.74|>": 51800,
1090
+ "<|28.76|>": 51801,
1091
+ "<|28.78|>": 51802,
1092
+ "<|28.80|>": 51803,
1093
+ "<|28.82|>": 51804,
1094
+ "<|28.84|>": 51805,
1095
+ "<|28.86|>": 51806,
1096
+ "<|28.88|>": 51807,
1097
+ "<|28.90|>": 51808,
1098
+ "<|28.92|>": 51809,
1099
+ "<|28.94|>": 51810,
1100
+ "<|28.96|>": 51811,
1101
+ "<|28.98|>": 51812,
1102
+ "<|29.00|>": 51813,
1103
+ "<|29.02|>": 51814,
1104
+ "<|29.04|>": 51815,
1105
+ "<|29.06|>": 51816,
1106
+ "<|29.08|>": 51817,
1107
+ "<|29.10|>": 51818,
1108
+ "<|29.12|>": 51819,
1109
+ "<|29.14|>": 51820,
1110
+ "<|29.16|>": 51821,
1111
+ "<|29.18|>": 51822,
1112
+ "<|29.20|>": 51823,
1113
+ "<|29.22|>": 51824,
1114
+ "<|29.24|>": 51825,
1115
+ "<|29.26|>": 51826,
1116
+ "<|29.28|>": 51827,
1117
+ "<|29.30|>": 51828,
1118
+ "<|29.32|>": 51829,
1119
+ "<|29.34|>": 51830,
1120
+ "<|29.36|>": 51831,
1121
+ "<|29.38|>": 51832,
1122
+ "<|29.40|>": 51833,
1123
+ "<|29.42|>": 51834,
1124
+ "<|29.44|>": 51835,
1125
+ "<|29.46|>": 51836,
1126
+ "<|29.48|>": 51837,
1127
+ "<|29.50|>": 51838,
1128
+ "<|29.52|>": 51839,
1129
+ "<|29.54|>": 51840,
1130
+ "<|29.56|>": 51841,
1131
+ "<|29.58|>": 51842,
1132
+ "<|29.60|>": 51843,
1133
+ "<|29.62|>": 51844,
1134
+ "<|29.64|>": 51845,
1135
+ "<|29.66|>": 51846,
1136
+ "<|29.68|>": 51847,
1137
+ "<|29.70|>": 51848,
1138
+ "<|29.72|>": 51849,
1139
+ "<|29.74|>": 51850,
1140
+ "<|29.76|>": 51851,
1141
+ "<|29.78|>": 51852,
1142
+ "<|29.80|>": 51853,
1143
+ "<|29.82|>": 51854,
1144
+ "<|29.84|>": 51855,
1145
+ "<|29.86|>": 51856,
1146
+ "<|29.88|>": 51857,
1147
+ "<|29.90|>": 51858,
1148
+ "<|29.92|>": 51859,
1149
+ "<|29.94|>": 51860,
1150
+ "<|29.96|>": 51861,
1151
+ "<|29.98|>": 51862,
1152
+ "<|3.00|>": 50513,
1153
+ "<|3.02|>": 50514,
1154
+ "<|3.04|>": 50515,
1155
+ "<|3.06|>": 50516,
1156
+ "<|3.08|>": 50517,
1157
+ "<|3.10|>": 50518,
1158
+ "<|3.12|>": 50519,
1159
+ "<|3.14|>": 50520,
1160
+ "<|3.16|>": 50521,
1161
+ "<|3.18|>": 50522,
1162
+ "<|3.20|>": 50523,
1163
+ "<|3.22|>": 50524,
1164
+ "<|3.24|>": 50525,
1165
+ "<|3.26|>": 50526,
1166
+ "<|3.28|>": 50527,
1167
+ "<|3.30|>": 50528,
1168
+ "<|3.32|>": 50529,
1169
+ "<|3.34|>": 50530,
1170
+ "<|3.36|>": 50531,
1171
+ "<|3.38|>": 50532,
1172
+ "<|3.40|>": 50533,
1173
+ "<|3.42|>": 50534,
1174
+ "<|3.44|>": 50535,
1175
+ "<|3.46|>": 50536,
1176
+ "<|3.48|>": 50537,
1177
+ "<|3.50|>": 50538,
1178
+ "<|3.52|>": 50539,
1179
+ "<|3.54|>": 50540,
1180
+ "<|3.56|>": 50541,
1181
+ "<|3.58|>": 50542,
1182
+ "<|3.60|>": 50543,
1183
+ "<|3.62|>": 50544,
1184
+ "<|3.64|>": 50545,
1185
+ "<|3.66|>": 50546,
1186
+ "<|3.68|>": 50547,
1187
+ "<|3.70|>": 50548,
1188
+ "<|3.72|>": 50549,
1189
+ "<|3.74|>": 50550,
1190
+ "<|3.76|>": 50551,
1191
+ "<|3.78|>": 50552,
1192
+ "<|3.80|>": 50553,
1193
+ "<|3.82|>": 50554,
1194
+ "<|3.84|>": 50555,
1195
+ "<|3.86|>": 50556,
1196
+ "<|3.88|>": 50557,
1197
+ "<|3.90|>": 50558,
1198
+ "<|3.92|>": 50559,
1199
+ "<|3.94|>": 50560,
1200
+ "<|3.96|>": 50561,
1201
+ "<|3.98|>": 50562,
1202
+ "<|30.00|>": 51863,
1203
+ "<|4.00|>": 50563,
1204
+ "<|4.02|>": 50564,
1205
+ "<|4.04|>": 50565,
1206
+ "<|4.06|>": 50566,
1207
+ "<|4.08|>": 50567,
1208
+ "<|4.10|>": 50568,
1209
+ "<|4.12|>": 50569,
1210
+ "<|4.14|>": 50570,
1211
+ "<|4.16|>": 50571,
1212
+ "<|4.18|>": 50572,
1213
+ "<|4.20|>": 50573,
1214
+ "<|4.22|>": 50574,
1215
+ "<|4.24|>": 50575,
1216
+ "<|4.26|>": 50576,
1217
+ "<|4.28|>": 50577,
1218
+ "<|4.30|>": 50578,
1219
+ "<|4.32|>": 50579,
1220
+ "<|4.34|>": 50580,
1221
+ "<|4.36|>": 50581,
1222
+ "<|4.38|>": 50582,
1223
+ "<|4.40|>": 50583,
1224
+ "<|4.42|>": 50584,
1225
+ "<|4.44|>": 50585,
1226
+ "<|4.46|>": 50586,
1227
+ "<|4.48|>": 50587,
1228
+ "<|4.50|>": 50588,
1229
+ "<|4.52|>": 50589,
1230
+ "<|4.54|>": 50590,
1231
+ "<|4.56|>": 50591,
1232
+ "<|4.58|>": 50592,
1233
+ "<|4.60|>": 50593,
1234
+ "<|4.62|>": 50594,
1235
+ "<|4.64|>": 50595,
1236
+ "<|4.66|>": 50596,
1237
+ "<|4.68|>": 50597,
1238
+ "<|4.70|>": 50598,
1239
+ "<|4.72|>": 50599,
1240
+ "<|4.74|>": 50600,
1241
+ "<|4.76|>": 50601,
1242
+ "<|4.78|>": 50602,
1243
+ "<|4.80|>": 50603,
1244
+ "<|4.82|>": 50604,
1245
+ "<|4.84|>": 50605,
1246
+ "<|4.86|>": 50606,
1247
+ "<|4.88|>": 50607,
1248
+ "<|4.90|>": 50608,
1249
+ "<|4.92|>": 50609,
1250
+ "<|4.94|>": 50610,
1251
+ "<|4.96|>": 50611,
1252
+ "<|4.98|>": 50612,
1253
+ "<|5.00|>": 50613,
1254
+ "<|5.02|>": 50614,
1255
+ "<|5.04|>": 50615,
1256
+ "<|5.06|>": 50616,
1257
+ "<|5.08|>": 50617,
1258
+ "<|5.10|>": 50618,
1259
+ "<|5.12|>": 50619,
1260
+ "<|5.14|>": 50620,
1261
+ "<|5.16|>": 50621,
1262
+ "<|5.18|>": 50622,
1263
+ "<|5.20|>": 50623,
1264
+ "<|5.22|>": 50624,
1265
+ "<|5.24|>": 50625,
1266
+ "<|5.26|>": 50626,
1267
+ "<|5.28|>": 50627,
1268
+ "<|5.30|>": 50628,
1269
+ "<|5.32|>": 50629,
1270
+ "<|5.34|>": 50630,
1271
+ "<|5.36|>": 50631,
1272
+ "<|5.38|>": 50632,
1273
+ "<|5.40|>": 50633,
1274
+ "<|5.42|>": 50634,
1275
+ "<|5.44|>": 50635,
1276
+ "<|5.46|>": 50636,
1277
+ "<|5.48|>": 50637,
1278
+ "<|5.50|>": 50638,
1279
+ "<|5.52|>": 50639,
1280
+ "<|5.54|>": 50640,
1281
+ "<|5.56|>": 50641,
1282
+ "<|5.58|>": 50642,
1283
+ "<|5.60|>": 50643,
1284
+ "<|5.62|>": 50644,
1285
+ "<|5.64|>": 50645,
1286
+ "<|5.66|>": 50646,
1287
+ "<|5.68|>": 50647,
1288
+ "<|5.70|>": 50648,
1289
+ "<|5.72|>": 50649,
1290
+ "<|5.74|>": 50650,
1291
+ "<|5.76|>": 50651,
1292
+ "<|5.78|>": 50652,
1293
+ "<|5.80|>": 50653,
1294
+ "<|5.82|>": 50654,
1295
+ "<|5.84|>": 50655,
1296
+ "<|5.86|>": 50656,
1297
+ "<|5.88|>": 50657,
1298
+ "<|5.90|>": 50658,
1299
+ "<|5.92|>": 50659,
1300
+ "<|5.94|>": 50660,
1301
+ "<|5.96|>": 50661,
1302
+ "<|5.98|>": 50662,
1303
+ "<|6.00|>": 50663,
1304
+ "<|6.02|>": 50664,
1305
+ "<|6.04|>": 50665,
1306
+ "<|6.06|>": 50666,
1307
+ "<|6.08|>": 50667,
1308
+ "<|6.10|>": 50668,
1309
+ "<|6.12|>": 50669,
1310
+ "<|6.14|>": 50670,
1311
+ "<|6.16|>": 50671,
1312
+ "<|6.18|>": 50672,
1313
+ "<|6.20|>": 50673,
1314
+ "<|6.22|>": 50674,
1315
+ "<|6.24|>": 50675,
1316
+ "<|6.26|>": 50676,
1317
+ "<|6.28|>": 50677,
1318
+ "<|6.30|>": 50678,
1319
+ "<|6.32|>": 50679,
1320
+ "<|6.34|>": 50680,
1321
+ "<|6.36|>": 50681,
1322
+ "<|6.38|>": 50682,
1323
+ "<|6.40|>": 50683,
1324
+ "<|6.42|>": 50684,
1325
+ "<|6.44|>": 50685,
1326
+ "<|6.46|>": 50686,
1327
+ "<|6.48|>": 50687,
1328
+ "<|6.50|>": 50688,
1329
+ "<|6.52|>": 50689,
1330
+ "<|6.54|>": 50690,
1331
+ "<|6.56|>": 50691,
1332
+ "<|6.58|>": 50692,
1333
+ "<|6.60|>": 50693,
1334
+ "<|6.62|>": 50694,
1335
+ "<|6.64|>": 50695,
1336
+ "<|6.66|>": 50696,
1337
+ "<|6.68|>": 50697,
1338
+ "<|6.70|>": 50698,
1339
+ "<|6.72|>": 50699,
1340
+ "<|6.74|>": 50700,
1341
+ "<|6.76|>": 50701,
1342
+ "<|6.78|>": 50702,
1343
+ "<|6.80|>": 50703,
1344
+ "<|6.82|>": 50704,
1345
+ "<|6.84|>": 50705,
1346
+ "<|6.86|>": 50706,
1347
+ "<|6.88|>": 50707,
1348
+ "<|6.90|>": 50708,
1349
+ "<|6.92|>": 50709,
1350
+ "<|6.94|>": 50710,
1351
+ "<|6.96|>": 50711,
1352
+ "<|6.98|>": 50712,
1353
+ "<|7.00|>": 50713,
1354
+ "<|7.02|>": 50714,
1355
+ "<|7.04|>": 50715,
1356
+ "<|7.06|>": 50716,
1357
+ "<|7.08|>": 50717,
1358
+ "<|7.10|>": 50718,
1359
+ "<|7.12|>": 50719,
1360
+ "<|7.14|>": 50720,
1361
+ "<|7.16|>": 50721,
1362
+ "<|7.18|>": 50722,
1363
+ "<|7.20|>": 50723,
1364
+ "<|7.22|>": 50724,
1365
+ "<|7.24|>": 50725,
1366
+ "<|7.26|>": 50726,
1367
+ "<|7.28|>": 50727,
1368
+ "<|7.30|>": 50728,
1369
+ "<|7.32|>": 50729,
1370
+ "<|7.34|>": 50730,
1371
+ "<|7.36|>": 50731,
1372
+ "<|7.38|>": 50732,
1373
+ "<|7.40|>": 50733,
1374
+ "<|7.42|>": 50734,
1375
+ "<|7.44|>": 50735,
1376
+ "<|7.46|>": 50736,
1377
+ "<|7.48|>": 50737,
1378
+ "<|7.50|>": 50738,
1379
+ "<|7.52|>": 50739,
1380
+ "<|7.54|>": 50740,
1381
+ "<|7.56|>": 50741,
1382
+ "<|7.58|>": 50742,
1383
+ "<|7.60|>": 50743,
1384
+ "<|7.62|>": 50744,
1385
+ "<|7.64|>": 50745,
1386
+ "<|7.66|>": 50746,
1387
+ "<|7.68|>": 50747,
1388
+ "<|7.70|>": 50748,
1389
+ "<|7.72|>": 50749,
1390
+ "<|7.74|>": 50750,
1391
+ "<|7.76|>": 50751,
1392
+ "<|7.78|>": 50752,
1393
+ "<|7.80|>": 50753,
1394
+ "<|7.82|>": 50754,
1395
+ "<|7.84|>": 50755,
1396
+ "<|7.86|>": 50756,
1397
+ "<|7.88|>": 50757,
1398
+ "<|7.90|>": 50758,
1399
+ "<|7.92|>": 50759,
1400
+ "<|7.94|>": 50760,
1401
+ "<|7.96|>": 50761,
1402
+ "<|7.98|>": 50762,
1403
+ "<|8.00|>": 50763,
1404
+ "<|8.02|>": 50764,
1405
+ "<|8.04|>": 50765,
1406
+ "<|8.06|>": 50766,
1407
+ "<|8.08|>": 50767,
1408
+ "<|8.10|>": 50768,
1409
+ "<|8.12|>": 50769,
1410
+ "<|8.14|>": 50770,
1411
+ "<|8.16|>": 50771,
1412
+ "<|8.18|>": 50772,
1413
+ "<|8.20|>": 50773,
1414
+ "<|8.22|>": 50774,
1415
+ "<|8.24|>": 50775,
1416
+ "<|8.26|>": 50776,
1417
+ "<|8.28|>": 50777,
1418
+ "<|8.30|>": 50778,
1419
+ "<|8.32|>": 50779,
1420
+ "<|8.34|>": 50780,
1421
+ "<|8.36|>": 50781,
1422
+ "<|8.38|>": 50782,
1423
+ "<|8.40|>": 50783,
1424
+ "<|8.42|>": 50784,
1425
+ "<|8.44|>": 50785,
1426
+ "<|8.46|>": 50786,
1427
+ "<|8.48|>": 50787,
1428
+ "<|8.50|>": 50788,
1429
+ "<|8.52|>": 50789,
1430
+ "<|8.54|>": 50790,
1431
+ "<|8.56|>": 50791,
1432
+ "<|8.58|>": 50792,
1433
+ "<|8.60|>": 50793,
1434
+ "<|8.62|>": 50794,
1435
+ "<|8.64|>": 50795,
1436
+ "<|8.66|>": 50796,
1437
+ "<|8.68|>": 50797,
1438
+ "<|8.70|>": 50798,
1439
+ "<|8.72|>": 50799,
1440
+ "<|8.74|>": 50800,
1441
+ "<|8.76|>": 50801,
1442
+ "<|8.78|>": 50802,
1443
+ "<|8.80|>": 50803,
1444
+ "<|8.82|>": 50804,
1445
+ "<|8.84|>": 50805,
1446
+ "<|8.86|>": 50806,
1447
+ "<|8.88|>": 50807,
1448
+ "<|8.90|>": 50808,
1449
+ "<|8.92|>": 50809,
1450
+ "<|8.94|>": 50810,
1451
+ "<|8.96|>": 50811,
1452
+ "<|8.98|>": 50812,
1453
+ "<|9.00|>": 50813,
1454
+ "<|9.02|>": 50814,
1455
+ "<|9.04|>": 50815,
1456
+ "<|9.06|>": 50816,
1457
+ "<|9.08|>": 50817,
1458
+ "<|9.10|>": 50818,
1459
+ "<|9.12|>": 50819,
1460
+ "<|9.14|>": 50820,
1461
+ "<|9.16|>": 50821,
1462
+ "<|9.18|>": 50822,
1463
+ "<|9.20|>": 50823,
1464
+ "<|9.22|>": 50824,
1465
+ "<|9.24|>": 50825,
1466
+ "<|9.26|>": 50826,
1467
+ "<|9.28|>": 50827,
1468
+ "<|9.30|>": 50828,
1469
+ "<|9.32|>": 50829,
1470
+ "<|9.34|>": 50830,
1471
+ "<|9.36|>": 50831,
1472
+ "<|9.38|>": 50832,
1473
+ "<|9.40|>": 50833,
1474
+ "<|9.42|>": 50834,
1475
+ "<|9.44|>": 50835,
1476
+ "<|9.46|>": 50836,
1477
+ "<|9.48|>": 50837,
1478
+ "<|9.50|>": 50838,
1479
+ "<|9.52|>": 50839,
1480
+ "<|9.54|>": 50840,
1481
+ "<|9.56|>": 50841,
1482
+ "<|9.58|>": 50842,
1483
+ "<|9.60|>": 50843,
1484
+ "<|9.62|>": 50844,
1485
+ "<|9.64|>": 50845,
1486
+ "<|9.66|>": 50846,
1487
+ "<|9.68|>": 50847,
1488
+ "<|9.70|>": 50848,
1489
+ "<|9.72|>": 50849,
1490
+ "<|9.74|>": 50850,
1491
+ "<|9.76|>": 50851,
1492
+ "<|9.78|>": 50852,
1493
+ "<|9.80|>": 50853,
1494
+ "<|9.82|>": 50854,
1495
+ "<|9.84|>": 50855,
1496
+ "<|9.86|>": 50856,
1497
+ "<|9.88|>": 50857,
1498
+ "<|9.90|>": 50858,
1499
+ "<|9.92|>": 50859,
1500
+ "<|9.94|>": 50860,
1501
+ "<|9.96|>": 50861,
1502
+ "<|9.98|>": 50862,
1503
+ "<|af|>": 50326,
1504
+ "<|am|>": 50333,
1505
+ "<|ar|>": 50271,
1506
+ "<|as|>": 50349,
1507
+ "<|az|>": 50303,
1508
+ "<|ba|>": 50354,
1509
+ "<|be|>": 50329,
1510
+ "<|bg|>": 50291,
1511
+ "<|bn|>": 50301,
1512
+ "<|bo|>": 50346,
1513
+ "<|br|>": 50308,
1514
+ "<|bs|>": 50314,
1515
+ "<|ca|>": 50269,
1516
+ "<|cs|>": 50282,
1517
+ "<|cy|>": 50296,
1518
+ "<|da|>": 50284,
1519
+ "<|de|>": 50260,
1520
+ "<|el|>": 50280,
1521
+ "<|en|>": 50258,
1522
+ "<|es|>": 50261,
1523
+ "<|et|>": 50306,
1524
+ "<|eu|>": 50309,
1525
+ "<|fa|>": 50299,
1526
+ "<|fi|>": 50276,
1527
+ "<|fo|>": 50337,
1528
+ "<|fr|>": 50264,
1529
+ "<|gl|>": 50318,
1530
+ "<|gu|>": 50332,
1531
+ "<|haw|>": 50351,
1532
+ "<|ha|>": 50353,
1533
+ "<|hi|>": 50275,
1534
+ "<|hr|>": 50290,
1535
+ "<|ht|>": 50338,
1536
+ "<|hu|>": 50285,
1537
+ "<|hy|>": 50311,
1538
+ "<|id|>": 50274,
1539
+ "<|is|>": 50310,
1540
+ "<|it|>": 50273,
1541
+ "<|iw|>": 50278,
1542
+ "<|ja|>": 50265,
1543
+ "<|jw|>": 50355,
1544
+ "<|ka|>": 50328,
1545
+ "<|kk|>": 50315,
1546
+ "<|km|>": 50322,
1547
+ "<|kn|>": 50305,
1548
+ "<|ko|>": 50263,
1549
+ "<|la|>": 50293,
1550
+ "<|lb|>": 50344,
1551
+ "<|ln|>": 50352,
1552
+ "<|lo|>": 50335,
1553
+ "<|lt|>": 50292,
1554
+ "<|lv|>": 50300,
1555
+ "<|mg|>": 50348,
1556
+ "<|mi|>": 50294,
1557
+ "<|mk|>": 50307,
1558
+ "<|ml|>": 50295,
1559
+ "<|mn|>": 50313,
1560
+ "<|mr|>": 50319,
1561
+ "<|ms|>": 50281,
1562
+ "<|mt|>": 50342,
1563
+ "<|my|>": 50345,
1564
+ "<|ne|>": 50312,
1565
+ "<|nl|>": 50270,
1566
+ "<|nn|>": 50341,
1567
+ "<|nocaptions|>": 50361,
1568
+ "<|notimestamps|>": 50362,
1569
+ "<|no|>": 50287,
1570
+ "<|oc|>": 50327,
1571
+ "<|pa|>": 50320,
1572
+ "<|pl|>": 50268,
1573
+ "<|ps|>": 50339,
1574
+ "<|pt|>": 50266,
1575
+ "<|ro|>": 50283,
1576
+ "<|ru|>": 50262,
1577
+ "<|sa|>": 50343,
1578
+ "<|sd|>": 50331,
1579
+ "<|si|>": 50321,
1580
+ "<|sk|>": 50297,
1581
+ "<|sl|>": 50304,
1582
+ "<|sn|>": 50323,
1583
+ "<|so|>": 50325,
1584
+ "<|sq|>": 50316,
1585
+ "<|sr|>": 50302,
1586
+ "<|startoflm|>": 50359,
1587
+ "<|startofprev|>": 50360,
1588
+ "<|startoftranscript|>": 50257,
1589
+ "<|su|>": 50356,
1590
+ "<|sv|>": 50272,
1591
+ "<|sw|>": 50317,
1592
+ "<|ta|>": 50286,
1593
+ "<|te|>": 50298,
1594
+ "<|tg|>": 50330,
1595
+ "<|th|>": 50288,
1596
+ "<|tk|>": 50340,
1597
+ "<|tl|>": 50347,
1598
+ "<|transcribe|>": 50358,
1599
+ "<|translate|>": 50357,
1600
+ "<|tr|>": 50267,
1601
+ "<|tt|>": 50350,
1602
+ "<|uk|>": 50279,
1603
+ "<|ur|>": 50289,
1604
+ "<|uz|>": 50336,
1605
+ "<|vi|>": 50277,
1606
+ "<|yi|>": 50334,
1607
+ "<|yo|>": 50324,
1608
+ "<|zh|>": 50259
1609
+ }
config.json CHANGED
@@ -2,7 +2,6 @@
2
  "_name_or_path": "openai/whisper-medium.en",
3
  "activation_dropout": 0.0,
4
  "activation_function": "gelu",
5
- "apply_spec_augment": false,
6
  "architectures": [
7
  "WhisperForConditionalGeneration"
8
  ],
@@ -12,7 +11,6 @@
12
  50256
13
  ],
14
  "bos_token_id": 50257,
15
- "classifier_proj_size": 256,
16
  "d_model": 1024,
17
  "decoder_attention_heads": 16,
18
  "decoder_ffn_dim": 4096,
@@ -33,16 +31,9 @@
33
  ],
34
  "init_std": 0.02,
35
  "is_encoder_decoder": true,
36
- "mask_feature_length": 10,
37
- "mask_feature_min_masks": 0,
38
- "mask_feature_prob": 0.0,
39
- "mask_time_length": 10,
40
- "mask_time_min_masks": 2,
41
- "mask_time_prob": 0.05,
42
  "max_length": 448,
43
  "max_source_positions": 1500,
44
  "max_target_positions": 448,
45
- "median_filter_width": 7,
46
  "model_type": "whisper",
47
  "num_hidden_layers": 24,
48
  "num_mel_bins": 80,
@@ -141,8 +132,7 @@
141
  50361
142
  ],
143
  "torch_dtype": "float32",
144
- "transformers_version": "4.38.1",
145
- "use_cache": false,
146
- "use_weighted_layer_sum": false,
147
  "vocab_size": 51864
148
  }
 
2
  "_name_or_path": "openai/whisper-medium.en",
3
  "activation_dropout": 0.0,
4
  "activation_function": "gelu",
 
5
  "architectures": [
6
  "WhisperForConditionalGeneration"
7
  ],
 
11
  50256
12
  ],
13
  "bos_token_id": 50257,
 
14
  "d_model": 1024,
15
  "decoder_attention_heads": 16,
16
  "decoder_ffn_dim": 4096,
 
31
  ],
32
  "init_std": 0.02,
33
  "is_encoder_decoder": true,
 
 
 
 
 
 
34
  "max_length": 448,
35
  "max_source_positions": 1500,
36
  "max_target_positions": 448,
 
37
  "model_type": "whisper",
38
  "num_hidden_layers": 24,
39
  "num_mel_bins": 80,
 
132
  50361
133
  ],
134
  "torch_dtype": "float32",
135
+ "transformers_version": "4.27.0.dev0",
136
+ "use_cache": true,
 
137
  "vocab_size": 51864
138
  }
generation_config.json CHANGED
@@ -185,5 +185,5 @@
185
  50360,
186
  50361
187
  ],
188
- "transformers_version": "4.38.1"
189
  }
 
185
  50360,
186
  50361
187
  ],
188
+ "transformers_version": "4.31.0.dev0"
189
  }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
normalizer.json ADDED
@@ -0,0 +1,1742 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "accessorise": "accessorize",
3
+ "accessorised": "accessorized",
4
+ "accessorises": "accessorizes",
5
+ "accessorising": "accessorizing",
6
+ "acclimatisation": "acclimatization",
7
+ "acclimatise": "acclimatize",
8
+ "acclimatised": "acclimatized",
9
+ "acclimatises": "acclimatizes",
10
+ "acclimatising": "acclimatizing",
11
+ "accoutrements": "accouterments",
12
+ "aeon": "eon",
13
+ "aeons": "eons",
14
+ "aerogramme": "aerogram",
15
+ "aerogrammes": "aerograms",
16
+ "aeroplane": "airplane",
17
+ "aeroplanes": "airplanes",
18
+ "aesthete": "esthete",
19
+ "aesthetes": "esthetes",
20
+ "aesthetic": "esthetic",
21
+ "aesthetically": "esthetically",
22
+ "aesthetics": "esthetics",
23
+ "aetiology": "etiology",
24
+ "ageing": "aging",
25
+ "aggrandisement": "aggrandizement",
26
+ "agonise": "agonize",
27
+ "agonised": "agonized",
28
+ "agonises": "agonizes",
29
+ "agonising": "agonizing",
30
+ "agonisingly": "agonizingly",
31
+ "almanack": "almanac",
32
+ "almanacks": "almanacs",
33
+ "aluminium": "aluminum",
34
+ "amortisable": "amortizable",
35
+ "amortisation": "amortization",
36
+ "amortisations": "amortizations",
37
+ "amortise": "amortize",
38
+ "amortised": "amortized",
39
+ "amortises": "amortizes",
40
+ "amortising": "amortizing",
41
+ "amphitheatre": "amphitheater",
42
+ "amphitheatres": "amphitheaters",
43
+ "anaemia": "anemia",
44
+ "anaemic": "anemic",
45
+ "anaesthesia": "anesthesia",
46
+ "anaesthetic": "anesthetic",
47
+ "anaesthetics": "anesthetics",
48
+ "anaesthetise": "anesthetize",
49
+ "anaesthetised": "anesthetized",
50
+ "anaesthetises": "anesthetizes",
51
+ "anaesthetising": "anesthetizing",
52
+ "anaesthetist": "anesthetist",
53
+ "anaesthetists": "anesthetists",
54
+ "anaesthetize": "anesthetize",
55
+ "anaesthetized": "anesthetized",
56
+ "anaesthetizes": "anesthetizes",
57
+ "anaesthetizing": "anesthetizing",
58
+ "analogue": "analog",
59
+ "analogues": "analogs",
60
+ "analyse": "analyze",
61
+ "analysed": "analyzed",
62
+ "analyses": "analyzes",
63
+ "analysing": "analyzing",
64
+ "anglicise": "anglicize",
65
+ "anglicised": "anglicized",
66
+ "anglicises": "anglicizes",
67
+ "anglicising": "anglicizing",
68
+ "annualised": "annualized",
69
+ "antagonise": "antagonize",
70
+ "antagonised": "antagonized",
71
+ "antagonises": "antagonizes",
72
+ "antagonising": "antagonizing",
73
+ "apologise": "apologize",
74
+ "apologised": "apologized",
75
+ "apologises": "apologizes",
76
+ "apologising": "apologizing",
77
+ "appal": "appall",
78
+ "appals": "appalls",
79
+ "appetiser": "appetizer",
80
+ "appetisers": "appetizers",
81
+ "appetising": "appetizing",
82
+ "appetisingly": "appetizingly",
83
+ "arbour": "arbor",
84
+ "arbours": "arbors",
85
+ "archaeologically": "archeologically",
86
+ "archaeologist": "archeologist",
87
+ "archaeologists": "archeologists",
88
+ "archaeology": "archeology</span>",
89
+ "archeological": "archaeological",
90
+ "ardour": "ardor",
91
+ "armour": "armor",
92
+ "armoured": "armored",
93
+ "armourer": "armorer",
94
+ "armourers": "armorers",
95
+ "armouries": "armories",
96
+ "armoury": "armory",
97
+ "artefact": "artifact",
98
+ "artefacts": "artifacts",
99
+ "authorise": "authorize",
100
+ "authorised": "authorized",
101
+ "authorises": "authorizes",
102
+ "authorising": "authorizing",
103
+ "axe": "ax",
104
+ "backpedalled": "backpedaled",
105
+ "backpedalling": "backpedaling",
106
+ "bannister": "banister",
107
+ "bannisters": "banisters",
108
+ "baptise": "baptize",
109
+ "baptised": "baptized",
110
+ "baptises": "baptizes",
111
+ "baptising": "baptizing",
112
+ "bastardise": "bastardize",
113
+ "bastardised": "bastardized",
114
+ "bastardises": "bastardizes",
115
+ "bastardising": "bastardizing",
116
+ "battleax": "battleaxe",
117
+ "baulk": "balk",
118
+ "baulked": "balked",
119
+ "baulking": "balking",
120
+ "baulks": "balks",
121
+ "bedevilled": "bedeviled",
122
+ "bedevilling": "bedeviling",
123
+ "behaviour": "behavior",
124
+ "behavioural": "behavioral",
125
+ "behaviourism": "behaviorism",
126
+ "behaviourist": "behaviorist",
127
+ "behaviourists": "behaviorists",
128
+ "behaviours": "behaviors",
129
+ "behove": "behoove",
130
+ "behoved": "behooved",
131
+ "behoves": "behooves",
132
+ "bejewelled": "bejeweled",
133
+ "belabour": "belabor",
134
+ "belaboured": "belabored",
135
+ "belabouring": "belaboring",
136
+ "belabours": "belabors",
137
+ "bevelled": "beveled",
138
+ "bevvies": "bevies",
139
+ "bevvy": "bevy",
140
+ "biassed": "biased",
141
+ "biassing": "biasing",
142
+ "bingeing": "binging",
143
+ "bougainvillaea": "bougainvillea",
144
+ "bougainvillaeas": "bougainvilleas",
145
+ "bowdlerise": "bowdlerize",
146
+ "bowdlerised": "bowdlerized",
147
+ "bowdlerises": "bowdlerizes",
148
+ "bowdlerising": "bowdlerizing",
149
+ "breathalyse": "breathalyze",
150
+ "breathalysed": "breathalyzed",
151
+ "breathalyser": "breathalyzer",
152
+ "breathalysers": "breathalyzers",
153
+ "breathalyses": "breathalyzes",
154
+ "breathalysing": "breathalyzing",
155
+ "brutalise": "brutalize",
156
+ "brutalised": "brutalized",
157
+ "brutalises": "brutalizes",
158
+ "brutalising": "brutalizing",
159
+ "busses": "buses",
160
+ "bussing": "busing",
161
+ "caesarean": "cesarean",
162
+ "caesareans": "cesareans",
163
+ "calibre": "caliber",
164
+ "calibres": "calibers",
165
+ "calliper": "caliper",
166
+ "callipers": "calipers",
167
+ "callisthenics": "calisthenics",
168
+ "canalise": "canalize",
169
+ "canalised": "canalized",
170
+ "canalises": "canalizes",
171
+ "canalising": "canalizing",
172
+ "cancelation": "cancellation",
173
+ "cancelations": "cancellations",
174
+ "cancelled": "canceled",
175
+ "cancelling": "canceling",
176
+ "candour": "candor",
177
+ "cannibalise": "cannibalize",
178
+ "cannibalised": "cannibalized",
179
+ "cannibalises": "cannibalizes",
180
+ "cannibalising": "cannibalizing",
181
+ "canonise": "canonize",
182
+ "canonised": "canonized",
183
+ "canonises": "canonizes",
184
+ "canonising": "canonizing",
185
+ "capitalise": "capitalize",
186
+ "capitalised": "capitalized",
187
+ "capitalises": "capitalizes",
188
+ "capitalising": "capitalizing",
189
+ "caramelise": "caramelize",
190
+ "caramelised": "caramelized",
191
+ "caramelises": "caramelizes",
192
+ "caramelising": "caramelizing",
193
+ "carbonise": "carbonize",
194
+ "carbonised": "carbonized",
195
+ "carbonises": "carbonizes",
196
+ "carbonising": "carbonizing",
197
+ "carolled": "caroled",
198
+ "carolling": "caroling",
199
+ "catalogue": "catalog",
200
+ "catalogued": "cataloged",
201
+ "catalogues": "catalogs",
202
+ "cataloguing": "cataloging",
203
+ "catalyse": "catalyze",
204
+ "catalysed": "catalyzed",
205
+ "catalyses": "catalyzes",
206
+ "catalysing": "catalyzing",
207
+ "categorise": "categorize",
208
+ "categorised": "categorized",
209
+ "categorises": "categorizes",
210
+ "categorising": "categorizing",
211
+ "cauterise": "cauterize",
212
+ "cauterised": "cauterized",
213
+ "cauterises": "cauterizes",
214
+ "cauterising": "cauterizing",
215
+ "cavilled": "caviled",
216
+ "cavilling": "caviling",
217
+ "centigramme": "centigram",
218
+ "centigrammes": "centigrams",
219
+ "centilitre": "centiliter",
220
+ "centilitres": "centiliters",
221
+ "centimetre": "centimeter",
222
+ "centimetres": "centimeters",
223
+ "centralise": "centralize",
224
+ "centralised": "centralized",
225
+ "centralises": "centralizes",
226
+ "centralising": "centralizing",
227
+ "centre": "center",
228
+ "centred": "centered",
229
+ "centrefold": "centerfold",
230
+ "centrefolds": "centerfolds",
231
+ "centrepiece": "centerpiece",
232
+ "centrepieces": "centerpieces",
233
+ "centres": "centers",
234
+ "channelled": "channeled",
235
+ "channelling": "channeling",
236
+ "characterise": "characterize",
237
+ "characterised": "characterized",
238
+ "characterises": "characterizes",
239
+ "characterising": "characterizing",
240
+ "cheque": "check",
241
+ "chequebook": "checkbook",
242
+ "chequebooks": "checkbooks",
243
+ "chequered": "checkered",
244
+ "cheques": "checks",
245
+ "chilli": "chili",
246
+ "chimaera": "chimera",
247
+ "chimaeras": "chimeras",
248
+ "chiselled": "chiseled",
249
+ "chiselling": "chiseling",
250
+ "circularise": "circularize",
251
+ "circularised": "circularized",
252
+ "circularises": "circularizes",
253
+ "circularising": "circularizing",
254
+ "civilise": "civilize",
255
+ "civilised": "civilized",
256
+ "civilises": "civilizes",
257
+ "civilising": "civilizing",
258
+ "clamour": "clamor",
259
+ "clamoured": "clamored",
260
+ "clamouring": "clamoring",
261
+ "clamours": "clamors",
262
+ "clangour": "clangor",
263
+ "clarinettist": "clarinetist",
264
+ "clarinettists": "clarinetists",
265
+ "collectivise": "collectivize",
266
+ "collectivised": "collectivized",
267
+ "collectivises": "collectivizes",
268
+ "collectivising": "collectivizing",
269
+ "colonisation": "colonization",
270
+ "colonise": "colonize",
271
+ "colonised": "colonized",
272
+ "coloniser": "colonizer",
273
+ "colonisers": "colonizers",
274
+ "colonises": "colonizes",
275
+ "colonising": "colonizing",
276
+ "colour": "color",
277
+ "colourant": "colorant",
278
+ "colourants": "colorants",
279
+ "coloured": "colored",
280
+ "coloureds": "coloreds",
281
+ "colourful": "colorful",
282
+ "colourfully": "colorfully",
283
+ "colouring": "coloring",
284
+ "colourize": "colorize",
285
+ "colourized": "colorized",
286
+ "colourizes": "colorizes",
287
+ "colourizing": "colorizing",
288
+ "colourless": "colorless",
289
+ "colours": "colors",
290
+ "commercialise": "commercialize",
291
+ "commercialised": "commercialized",
292
+ "commercialises": "commercializes",
293
+ "commercialising": "commercializing",
294
+ "compartmentalise": "compartmentalize",
295
+ "compartmentalised": "compartmentalized",
296
+ "compartmentalises": "compartmentalizes",
297
+ "compartmentalising": "compartmentalizing",
298
+ "computerise": "computerize",
299
+ "computerised": "computerized",
300
+ "computerises": "computerizes",
301
+ "computerising": "computerizing",
302
+ "conceptualise": "conceptualize",
303
+ "conceptualised": "conceptualized",
304
+ "conceptualises": "conceptualizes",
305
+ "conceptualising": "conceptualizing",
306
+ "connexion": "connection",
307
+ "connexions": "connections",
308
+ "contextualise": "contextualize",
309
+ "contextualised": "contextualized",
310
+ "contextualises": "contextualizes",
311
+ "contextualising": "contextualizing",
312
+ "cosier": "cozier",
313
+ "cosies": "cozies",
314
+ "cosiest": "coziest",
315
+ "cosily": "cozily",
316
+ "cosiness": "coziness",
317
+ "cosy": "cozy",
318
+ "councillor": "councilor",
319
+ "councillors": "councilors",
320
+ "counselled": "counseled",
321
+ "counselling": "counseling",
322
+ "counsellor": "counselor",
323
+ "counsellors": "counselors",
324
+ "crenelated": "crenellated",
325
+ "criminalise": "criminalize",
326
+ "criminalised": "criminalized",
327
+ "criminalises": "criminalizes",
328
+ "criminalising": "criminalizing",
329
+ "criticise": "criticize",
330
+ "criticised": "criticized",
331
+ "criticises": "criticizes",
332
+ "criticising": "criticizing",
333
+ "crueller": "crueler",
334
+ "cruellest": "cruelest",
335
+ "crystallisation": "crystallization",
336
+ "crystallise": "crystallize",
337
+ "crystallised": "crystallized",
338
+ "crystallises": "crystallizes",
339
+ "crystallising": "crystallizing",
340
+ "cudgelled": "cudgeled",
341
+ "cudgelling": "cudgeling",
342
+ "customise": "customize",
343
+ "customised": "customized",
344
+ "customises": "customizes",
345
+ "customising": "customizing",
346
+ "cypher": "cipher",
347
+ "cyphers": "ciphers",
348
+ "decentralisation": "decentralization",
349
+ "decentralise": "decentralize",
350
+ "decentralised": "decentralized",
351
+ "decentralises": "decentralizes",
352
+ "decentralising": "decentralizing",
353
+ "decriminalisation": "decriminalization",
354
+ "decriminalise": "decriminalize",
355
+ "decriminalised": "decriminalized",
356
+ "decriminalises": "decriminalizes",
357
+ "decriminalising": "decriminalizing",
358
+ "defence": "defense",
359
+ "defenceless": "defenseless",
360
+ "defences": "defenses",
361
+ "dehumanisation": "dehumanization",
362
+ "dehumanise": "dehumanize",
363
+ "dehumanised": "dehumanized",
364
+ "dehumanises": "dehumanizes",
365
+ "dehumanising": "dehumanizing",
366
+ "demeanour": "demeanor",
367
+ "demilitarisation": "demilitarization",
368
+ "demilitarise": "demilitarize",
369
+ "demilitarised": "demilitarized",
370
+ "demilitarises": "demilitarizes",
371
+ "demilitarising": "demilitarizing",
372
+ "demobilisation": "demobilization",
373
+ "demobilise": "demobilize",
374
+ "demobilised": "demobilized",
375
+ "demobilises": "demobilizes",
376
+ "demobilising": "demobilizing",
377
+ "democratisation": "democratization",
378
+ "democratise": "democratize",
379
+ "democratised": "democratized",
380
+ "democratises": "democratizes",
381
+ "democratising": "democratizing",
382
+ "demonise": "demonize",
383
+ "demonised": "demonized",
384
+ "demonises": "demonizes",
385
+ "demonising": "demonizing",
386
+ "demoralisation": "demoralization",
387
+ "demoralise": "demoralize",
388
+ "demoralised": "demoralized",
389
+ "demoralises": "demoralizes",
390
+ "demoralising": "demoralizing",
391
+ "denationalisation": "denationalization",
392
+ "denationalise": "denationalize",
393
+ "denationalised": "denationalized",
394
+ "denationalises": "denationalizes",
395
+ "denationalising": "denationalizing",
396
+ "deodorise": "deodorize",
397
+ "deodorised": "deodorized",
398
+ "deodorises": "deodorizes",
399
+ "deodorising": "deodorizing",
400
+ "depersonalise": "depersonalize",
401
+ "depersonalised": "depersonalized",
402
+ "depersonalises": "depersonalizes",
403
+ "depersonalising": "depersonalizing",
404
+ "deputise": "deputize",
405
+ "deputised": "deputized",
406
+ "deputises": "deputizes",
407
+ "deputising": "deputizing",
408
+ "desensitisation": "desensitization",
409
+ "desensitise": "desensitize",
410
+ "desensitised": "desensitized",
411
+ "desensitises": "desensitizes",
412
+ "desensitising": "desensitizing",
413
+ "destabilisation": "destabilization",
414
+ "destabilise": "destabilize",
415
+ "destabilised": "destabilized",
416
+ "destabilises": "destabilizes",
417
+ "destabilising": "destabilizing",
418
+ "dialled": "dialed",
419
+ "dialling": "dialing",
420
+ "dialogue": "dialog",
421
+ "dialogues": "dialogs",
422
+ "diarrhoea": "diarrhea",
423
+ "digitise": "digitize",
424
+ "digitised": "digitized",
425
+ "digitises": "digitizes",
426
+ "digitising": "digitizing",
427
+ "disc": "disk",
428
+ "discolour": "discolor",
429
+ "discoloured": "discolored",
430
+ "discolouring": "discoloring",
431
+ "discolours": "discolors",
432
+ "discs": "disks",
433
+ "disembowelled": "disemboweled",
434
+ "disembowelling": "disemboweling",
435
+ "disfavour": "disfavor",
436
+ "dishevelled": "disheveled",
437
+ "dishonour": "dishonor",
438
+ "dishonourable": "dishonorable",
439
+ "dishonourably": "dishonorably",
440
+ "dishonoured": "dishonored",
441
+ "dishonouring": "dishonoring",
442
+ "dishonours": "dishonors",
443
+ "disorganisation": "disorganization",
444
+ "disorganised": "disorganized",
445
+ "distil": "distill",
446
+ "distils": "distills",
447
+ "dramatisation": "dramatization",
448
+ "dramatisations": "dramatizations",
449
+ "dramatise": "dramatize",
450
+ "dramatised": "dramatized",
451
+ "dramatises": "dramatizes",
452
+ "dramatising": "dramatizing",
453
+ "draught": "draft",
454
+ "draughtboard": "draftboard",
455
+ "draughtboards": "draftboards",
456
+ "draughtier": "draftier",
457
+ "draughtiest": "draftiest",
458
+ "draughts": "drafts",
459
+ "draughtsman": "draftsman",
460
+ "draughtsmanship": "draftsmanship",
461
+ "draughtsmen": "draftsmen",
462
+ "draughtswoman": "draftswoman",
463
+ "draughtswomen": "draftswomen",
464
+ "draughty": "drafty",
465
+ "drivelled": "driveled",
466
+ "drivelling": "driveling",
467
+ "duelled": "dueled",
468
+ "duelling": "dueling",
469
+ "economise": "economize",
470
+ "economised": "economized",
471
+ "economises": "economizes",
472
+ "economising": "economizing",
473
+ "editorialise": "editorialize",
474
+ "editorialised": "editorialized",
475
+ "editorialises": "editorializes",
476
+ "editorialising": "editorializing",
477
+ "edoema": "edema",
478
+ "empathise": "empathize",
479
+ "empathised": "empathized",
480
+ "empathises": "empathizes",
481
+ "empathising": "empathizing",
482
+ "emphasise": "emphasize",
483
+ "emphasised": "emphasized",
484
+ "emphasises": "emphasizes",
485
+ "emphasising": "emphasizing",
486
+ "enamelled": "enameled",
487
+ "enamelling": "enameling",
488
+ "enamoured": "enamored",
489
+ "encyclopaedia": "encyclopedia",
490
+ "encyclopaedias": "encyclopedias",
491
+ "encyclopaedic": "encyclopedic",
492
+ "endeavour": "endeavor",
493
+ "endeavoured": "endeavored",
494
+ "endeavouring": "endeavoring",
495
+ "endeavours": "endeavors",
496
+ "energise": "energize",
497
+ "energised": "energized",
498
+ "energises": "energizes",
499
+ "energising": "energizing",
500
+ "enrol": "enroll",
501
+ "enrols": "enrolls",
502
+ "enthral": "enthrall",
503
+ "enthrals": "enthralls",
504
+ "epaulette": "epaulet",
505
+ "epaulettes": "epaulets",
506
+ "epicentre": "epicenter",
507
+ "epicentres": "epicenters",
508
+ "epilogue": "epilog",
509
+ "epilogues": "epilogs",
510
+ "epitomise": "epitomize",
511
+ "epitomised": "epitomized",
512
+ "epitomises": "epitomizes",
513
+ "epitomising": "epitomizing",
514
+ "equalisation": "equalization",
515
+ "equalise": "equalize",
516
+ "equalised": "equalized",
517
+ "equaliser": "equalizer",
518
+ "equalisers": "equalizers",
519
+ "equalises": "equalizes",
520
+ "equalising": "equalizing",
521
+ "eulogise": "eulogize",
522
+ "eulogised": "eulogized",
523
+ "eulogises": "eulogizes",
524
+ "eulogising": "eulogizing",
525
+ "evangelise": "evangelize",
526
+ "evangelised": "evangelized",
527
+ "evangelises": "evangelizes",
528
+ "evangelising": "evangelizing",
529
+ "exorcise": "exorcize",
530
+ "exorcised": "exorcized",
531
+ "exorcises": "exorcizes",
532
+ "exorcising": "exorcizing",
533
+ "extemporisation": "extemporization",
534
+ "extemporise": "extemporize",
535
+ "extemporised": "extemporized",
536
+ "extemporises": "extemporizes",
537
+ "extemporising": "extemporizing",
538
+ "externalisation": "externalization",
539
+ "externalisations": "externalizations",
540
+ "externalise": "externalize",
541
+ "externalised": "externalized",
542
+ "externalises": "externalizes",
543
+ "externalising": "externalizing",
544
+ "factorise": "factorize",
545
+ "factorised": "factorized",
546
+ "factorises": "factorizes",
547
+ "factorising": "factorizing",
548
+ "faecal": "fecal",
549
+ "faeces": "feces",
550
+ "familiarisation": "familiarization",
551
+ "familiarise": "familiarize",
552
+ "familiarised": "familiarized",
553
+ "familiarises": "familiarizes",
554
+ "familiarising": "familiarizing",
555
+ "fantasise": "fantasize",
556
+ "fantasised": "fantasized",
557
+ "fantasises": "fantasizes",
558
+ "fantasising": "fantasizing",
559
+ "favour": "favor",
560
+ "favourable": "favorable",
561
+ "favourably": "favorably",
562
+ "favoured": "favored",
563
+ "favouring": "favoring",
564
+ "favourite": "favorite",
565
+ "favourites": "favorites",
566
+ "favouritism": "favoritism",
567
+ "favours": "favors",
568
+ "feminise": "feminize",
569
+ "feminised": "feminized",
570
+ "feminises": "feminizes",
571
+ "feminising": "feminizing",
572
+ "fertilisation": "fertilization",
573
+ "fertilise": "fertilize",
574
+ "fertilised": "fertilized",
575
+ "fertiliser": "fertilizer",
576
+ "fertilisers": "fertilizers",
577
+ "fertilises": "fertilizes",
578
+ "fertilising": "fertilizing",
579
+ "fervour": "fervor",
580
+ "fibre": "fiber",
581
+ "fibreglass": "fiberglass",
582
+ "fibres": "fibers",
583
+ "fictionalisation": "fictionalization",
584
+ "fictionalisations": "fictionalizations",
585
+ "fictionalise": "fictionalize",
586
+ "fictionalised": "fictionalized",
587
+ "fictionalises": "fictionalizes",
588
+ "fictionalising": "fictionalizing",
589
+ "fillet": "filet",
590
+ "filleted": "fileted",
591
+ "filleting": "fileting",
592
+ "fillets": "filets",
593
+ "finalisation": "finalization",
594
+ "finalise": "finalize",
595
+ "finalised": "finalized",
596
+ "finalises": "finalizes",
597
+ "finalising": "finalizing",
598
+ "flautist": "flutist",
599
+ "flautists": "flutists",
600
+ "flavour": "flavor",
601
+ "flavoured": "flavored",
602
+ "flavouring": "flavoring",
603
+ "flavourings": "flavorings",
604
+ "flavourless": "flavorless",
605
+ "flavours": "flavors",
606
+ "flavoursome": "flavorsome",
607
+ "flyer / flier": "flier / flyer",
608
+ "foetal": "fetal",
609
+ "foetid": "fetid",
610
+ "foetus": "fetus",
611
+ "foetuses": "fetuses",
612
+ "formalisation": "formalization",
613
+ "formalise": "formalize",
614
+ "formalised": "formalized",
615
+ "formalises": "formalizes",
616
+ "formalising": "formalizing",
617
+ "fossilisation": "fossilization",
618
+ "fossilise": "fossilize",
619
+ "fossilised": "fossilized",
620
+ "fossilises": "fossilizes",
621
+ "fossilising": "fossilizing",
622
+ "fraternisation": "fraternization",
623
+ "fraternise": "fraternize",
624
+ "fraternised": "fraternized",
625
+ "fraternises": "fraternizes",
626
+ "fraternising": "fraternizing",
627
+ "fulfil": "fulfill",
628
+ "fulfilment": "fulfillment",
629
+ "fulfils": "fulfills",
630
+ "funnelled": "funneled",
631
+ "funnelling": "funneling",
632
+ "gage": "gauge",
633
+ "gaged": "gauged",
634
+ "gages": "gauges",
635
+ "gaging": "gauging",
636
+ "galvanise": "galvanize",
637
+ "galvanised": "galvanized",
638
+ "galvanises": "galvanizes",
639
+ "galvanising": "galvanizing",
640
+ "gambolled": "gamboled",
641
+ "gambolling": "gamboling",
642
+ "gaol": "jail",
643
+ "gaolbird": "jailbird",
644
+ "gaolbirds": "jailbirds",
645
+ "gaolbreak": "jailbreak",
646
+ "gaolbreaks": "jailbreaks",
647
+ "gaoled": "jailed",
648
+ "gaoler": "jailer",
649
+ "gaolers": "jailers",
650
+ "gaoling": "jailing",
651
+ "gaols": "jails",
652
+ "gasses": "gases",
653
+ "generalisation": "generalization",
654
+ "generalisations": "generalizations",
655
+ "generalise": "generalize",
656
+ "generalised": "generalized",
657
+ "generalises": "generalizes",
658
+ "generalising": "generalizing",
659
+ "ghettoise": "ghettoize",
660
+ "ghettoised": "ghettoized",
661
+ "ghettoises": "ghettoizes",
662
+ "ghettoising": "ghettoizing",
663
+ "gipsies": "gypsies",
664
+ "glamor": "glamour",
665
+ "glamorise": "glamorize",
666
+ "glamorised": "glamorized",
667
+ "glamorises": "glamorizes",
668
+ "glamorising": "glamorizing",
669
+ "globalisation": "globalization",
670
+ "globalise": "globalize",
671
+ "globalised": "globalized",
672
+ "globalises": "globalizes",
673
+ "globalising": "globalizing",
674
+ "glueing": "gluing",
675
+ "goitre": "goiter",
676
+ "goitres": "goiters",
677
+ "gonorrhoea": "gonorrhea",
678
+ "gramme": "gram",
679
+ "grammes": "grams",
680
+ "gravelled": "graveled",
681
+ "grey": "gray",
682
+ "greyed": "grayed",
683
+ "greying": "graying",
684
+ "greyish": "grayish",
685
+ "greyness": "grayness",
686
+ "greys": "grays",
687
+ "grovelled": "groveled",
688
+ "grovelling": "groveling",
689
+ "groyne": "groin",
690
+ "groynes": "groins",
691
+ "gruelling": "grueling",
692
+ "gruellingly": "gruelingly",
693
+ "gryphon": "griffin",
694
+ "gryphons": "griffins",
695
+ "gynaecological": "gynecological",
696
+ "gynaecologist": "gynecologist",
697
+ "gynaecologists": "gynecologists",
698
+ "gynaecology": "gynecology",
699
+ "haematological": "hematological",
700
+ "haematologist": "hematologist",
701
+ "haematologists": "hematologists",
702
+ "haematology": "hematology",
703
+ "haemoglobin": "hemoglobin",
704
+ "haemophilia": "hemophilia",
705
+ "haemophiliac": "hemophiliac",
706
+ "haemophiliacs": "hemophiliacs",
707
+ "haemorrhage": "hemorrhage",
708
+ "haemorrhaged": "hemorrhaged",
709
+ "haemorrhages": "hemorrhages",
710
+ "haemorrhaging": "hemorrhaging",
711
+ "haemorrhoids": "hemorrhoids",
712
+ "harbour": "harbor",
713
+ "harboured": "harbored",
714
+ "harbouring": "harboring",
715
+ "harbours": "harbors",
716
+ "harmonisation": "harmonization",
717
+ "harmonise": "harmonize",
718
+ "harmonised": "harmonized",
719
+ "harmonises": "harmonizes",
720
+ "harmonising": "harmonizing",
721
+ "homoeopath": "homeopath",
722
+ "homoeopathic": "homeopathic",
723
+ "homoeopaths": "homeopaths",
724
+ "homoeopathy": "homeopathy",
725
+ "homogenise": "homogenize",
726
+ "homogenised": "homogenized",
727
+ "homogenises": "homogenizes",
728
+ "homogenising": "homogenizing",
729
+ "honour": "honor",
730
+ "honourable": "honorable",
731
+ "honourably": "honorably",
732
+ "honoured": "honored",
733
+ "honouring": "honoring",
734
+ "honours": "honors",
735
+ "hospitalisation": "hospitalization",
736
+ "hospitalise": "hospitalize",
737
+ "hospitalised": "hospitalized",
738
+ "hospitalises": "hospitalizes",
739
+ "hospitalising": "hospitalizing",
740
+ "humanise": "humanize",
741
+ "humanised": "humanized",
742
+ "humanises": "humanizes",
743
+ "humanising": "humanizing",
744
+ "humour": "humor",
745
+ "humoured": "humored",
746
+ "humouring": "humoring",
747
+ "humourless": "humorless",
748
+ "humours": "humors",
749
+ "hybridise": "hybridize",
750
+ "hybridised": "hybridized",
751
+ "hybridises": "hybridizes",
752
+ "hybridising": "hybridizing",
753
+ "hypnotise": "hypnotize",
754
+ "hypnotised": "hypnotized",
755
+ "hypnotises": "hypnotizes",
756
+ "hypnotising": "hypnotizing",
757
+ "hypothesise": "hypothesize",
758
+ "hypothesised": "hypothesized",
759
+ "hypothesises": "hypothesizes",
760
+ "hypothesising": "hypothesizing",
761
+ "idealisation": "idealization",
762
+ "idealise": "idealize",
763
+ "idealised": "idealized",
764
+ "idealises": "idealizes",
765
+ "idealising": "idealizing",
766
+ "idolise": "idolize",
767
+ "idolised": "idolized",
768
+ "idolises": "idolizes",
769
+ "idolising": "idolizing",
770
+ "immobilisation": "immobilization",
771
+ "immobilise": "immobilize",
772
+ "immobilised": "immobilized",
773
+ "immobiliser": "immobilizer",
774
+ "immobilisers": "immobilizers",
775
+ "immobilises": "immobilizes",
776
+ "immobilising": "immobilizing",
777
+ "immortalise": "immortalize",
778
+ "immortalised": "immortalized",
779
+ "immortalises": "immortalizes",
780
+ "immortalising": "immortalizing",
781
+ "immunisation": "immunization",
782
+ "immunise": "immunize",
783
+ "immunised": "immunized",
784
+ "immunises": "immunizes",
785
+ "immunising": "immunizing",
786
+ "impanelled": "impaneled",
787
+ "impanelling": "impaneling",
788
+ "imperilled": "imperiled",
789
+ "imperilling": "imperiling",
790
+ "individualise": "individualize",
791
+ "individualised": "individualized",
792
+ "individualises": "individualizes",
793
+ "individualising": "individualizing",
794
+ "industrialise": "industrialize",
795
+ "industrialised": "industrialized",
796
+ "industrialises": "industrializes",
797
+ "industrialising": "industrializing",
798
+ "inflexion": "inflection",
799
+ "inflexions": "inflections",
800
+ "initialise": "initialize",
801
+ "initialised": "initialized",
802
+ "initialises": "initializes",
803
+ "initialising": "initializing",
804
+ "initialled": "initialed",
805
+ "initialling": "initialing",
806
+ "instal": "install",
807
+ "instalment": "installment",
808
+ "instalments": "installments",
809
+ "instals": "installs",
810
+ "instil": "instill",
811
+ "instils": "instills",
812
+ "institutionalisation": "institutionalization",
813
+ "institutionalise": "institutionalize",
814
+ "institutionalised": "institutionalized",
815
+ "institutionalises": "institutionalizes",
816
+ "institutionalising": "institutionalizing",
817
+ "intellectualise": "intellectualize",
818
+ "intellectualised": "intellectualized",
819
+ "intellectualises": "intellectualizes",
820
+ "intellectualising": "intellectualizing",
821
+ "internalisation": "internalization",
822
+ "internalise": "internalize",
823
+ "internalised": "internalized",
824
+ "internalises": "internalizes",
825
+ "internalising": "internalizing",
826
+ "internationalisation": "internationalization",
827
+ "internationalise": "internationalize",
828
+ "internationalised": "internationalized",
829
+ "internationalises": "internationalizes",
830
+ "internationalising": "internationalizing",
831
+ "ionisation": "ionization",
832
+ "ionise": "ionize",
833
+ "ionised": "ionized",
834
+ "ioniser": "ionizer",
835
+ "ionisers": "ionizers",
836
+ "ionises": "ionizes",
837
+ "ionising": "ionizing",
838
+ "italicise": "italicize",
839
+ "italicised": "italicized",
840
+ "italicises": "italicizes",
841
+ "italicising": "italicizing",
842
+ "itemise": "itemize",
843
+ "itemised": "itemized",
844
+ "itemises": "itemizes",
845
+ "itemising": "itemizing",
846
+ "jeopardise": "jeopardize",
847
+ "jeopardised": "jeopardized",
848
+ "jeopardises": "jeopardizes",
849
+ "jeopardising": "jeopardizing",
850
+ "jewelled": "jeweled",
851
+ "jeweller": "jeweler",
852
+ "jewellers": "jewelers",
853
+ "jewellery": "jewelry",
854
+ "judgement": "judgment",
855
+ "kilogramme": "kilogram",
856
+ "kilogrammes": "kilograms",
857
+ "kilometre": "kilometer",
858
+ "kilometres": "kilometers",
859
+ "labelled": "labeled",
860
+ "labelling": "labeling",
861
+ "labour": "labor",
862
+ "laboured": "labored",
863
+ "labourer": "laborer",
864
+ "labourers": "laborers",
865
+ "labouring": "laboring",
866
+ "labours": "labors",
867
+ "lacklustre": "lackluster",
868
+ "legalisation": "legalization",
869
+ "legalise": "legalize",
870
+ "legalised": "legalized",
871
+ "legalises": "legalizes",
872
+ "legalising": "legalizing",
873
+ "legitimise": "legitimize",
874
+ "legitimised": "legitimized",
875
+ "legitimises": "legitimizes",
876
+ "legitimising": "legitimizing",
877
+ "leukaemia": "leukemia",
878
+ "levelled": "leveled",
879
+ "leveller": "leveler",
880
+ "levellers": "levelers",
881
+ "levelling": "leveling",
882
+ "libelled": "libeled",
883
+ "libelling": "libeling",
884
+ "libellous": "libelous",
885
+ "liberalisation": "liberalization",
886
+ "liberalise": "liberalize",
887
+ "liberalised": "liberalized",
888
+ "liberalises": "liberalizes",
889
+ "liberalising": "liberalizing",
890
+ "licence": "license",
891
+ "licenced": "licensed",
892
+ "licences": "licenses",
893
+ "licencing": "licensing",
894
+ "likeable": "likable",
895
+ "lionisation": "lionization",
896
+ "lionise": "lionize",
897
+ "lionised": "lionized",
898
+ "lionises": "lionizes",
899
+ "lionising": "lionizing",
900
+ "liquidise": "liquidize",
901
+ "liquidised": "liquidized",
902
+ "liquidiser": "liquidizer",
903
+ "liquidisers": "liquidizers",
904
+ "liquidises": "liquidizes",
905
+ "liquidising": "liquidizing",
906
+ "litre": "liter",
907
+ "litres": "liters",
908
+ "localise": "localize",
909
+ "localised": "localized",
910
+ "localises": "localizes",
911
+ "localising": "localizing",
912
+ "louvre": "louver",
913
+ "louvred": "louvered",
914
+ "louvres": "louvers",
915
+ "lustre": "luster",
916
+ "magnetise": "magnetize",
917
+ "magnetised": "magnetized",
918
+ "magnetises": "magnetizes",
919
+ "magnetising": "magnetizing",
920
+ "manoeuvrability": "maneuverability",
921
+ "manoeuvrable": "maneuverable",
922
+ "manoeuvre": "maneuver",
923
+ "manoeuvred": "maneuvered",
924
+ "manoeuvres": "maneuvers",
925
+ "manoeuvring": "maneuvering",
926
+ "manoeuvrings": "maneuverings",
927
+ "marginalisation": "marginalization",
928
+ "marginalise": "marginalize",
929
+ "marginalised": "marginalized",
930
+ "marginalises": "marginalizes",
931
+ "marginalising": "marginalizing",
932
+ "marshalled": "marshaled",
933
+ "marshalling": "marshaling",
934
+ "marvelled": "marveled",
935
+ "marvelling": "marveling",
936
+ "marvellous": "marvelous",
937
+ "marvellously": "marvelously",
938
+ "materialisation": "materialization",
939
+ "materialise": "materialize",
940
+ "materialised": "materialized",
941
+ "materialises": "materializes",
942
+ "materialising": "materializing",
943
+ "maximisation": "maximization",
944
+ "maximise": "maximize",
945
+ "maximised": "maximized",
946
+ "maximises": "maximizes",
947
+ "maximising": "maximizing",
948
+ "meagre": "meager",
949
+ "mechanisation": "mechanization",
950
+ "mechanise": "mechanize",
951
+ "mechanised": "mechanized",
952
+ "mechanises": "mechanizes",
953
+ "mechanising": "mechanizing",
954
+ "mediaeval": "medieval",
955
+ "memorialise": "memorialize",
956
+ "memorialised": "memorialized",
957
+ "memorialises": "memorializes",
958
+ "memorialising": "memorializing",
959
+ "memorise": "memorize",
960
+ "memorised": "memorized",
961
+ "memorises": "memorizes",
962
+ "memorising": "memorizing",
963
+ "mesmerise": "mesmerize",
964
+ "mesmerised": "mesmerized",
965
+ "mesmerises": "mesmerizes",
966
+ "mesmerising": "mesmerizing",
967
+ "metabolise": "metabolize",
968
+ "metabolised": "metabolized",
969
+ "metabolises": "metabolizes",
970
+ "metabolising": "metabolizing",
971
+ "metre": "meter",
972
+ "metres": "meters",
973
+ "mhm": "hmm",
974
+ "micrometre": "micrometer",
975
+ "micrometres": "micrometers",
976
+ "militarise": "militarize",
977
+ "militarised": "militarized",
978
+ "militarises": "militarizes",
979
+ "militarising": "militarizing",
980
+ "milligramme": "milligram",
981
+ "milligrammes": "milligrams",
982
+ "millilitre": "milliliter",
983
+ "millilitres": "milliliters",
984
+ "millimetre": "millimeter",
985
+ "millimetres": "millimeters",
986
+ "miniaturisation": "miniaturization",
987
+ "miniaturise": "miniaturize",
988
+ "miniaturised": "miniaturized",
989
+ "miniaturises": "miniaturizes",
990
+ "miniaturising": "miniaturizing",
991
+ "minibusses": "minibuses",
992
+ "minimise": "minimize",
993
+ "minimised": "minimized",
994
+ "minimises": "minimizes",
995
+ "minimising": "minimizing",
996
+ "misbehaviour": "misbehavior",
997
+ "misdemeanour": "misdemeanor",
998
+ "misdemeanours": "misdemeanors",
999
+ "misspelt": "misspelled",
1000
+ "mitre": "miter",
1001
+ "mitres": "miters",
1002
+ "mm": "hmm",
1003
+ "mmm": "hmm",
1004
+ "mobilisation": "mobilization",
1005
+ "mobilise": "mobilize",
1006
+ "mobilised": "mobilized",
1007
+ "mobilises": "mobilizes",
1008
+ "mobilising": "mobilizing",
1009
+ "modelled": "modeled",
1010
+ "modeller": "modeler",
1011
+ "modellers": "modelers",
1012
+ "modelling": "modeling",
1013
+ "modernise": "modernize",
1014
+ "modernised": "modernized",
1015
+ "modernises": "modernizes",
1016
+ "modernising": "modernizing",
1017
+ "moisturise": "moisturize",
1018
+ "moisturised": "moisturized",
1019
+ "moisturiser": "moisturizer",
1020
+ "moisturisers": "moisturizers",
1021
+ "moisturises": "moisturizes",
1022
+ "moisturising": "moisturizing",
1023
+ "monologue": "monolog",
1024
+ "monologues": "monologs",
1025
+ "monopolisation": "monopolization",
1026
+ "monopolise": "monopolize",
1027
+ "monopolised": "monopolized",
1028
+ "monopolises": "monopolizes",
1029
+ "monopolising": "monopolizing",
1030
+ "moralise": "moralize",
1031
+ "moralised": "moralized",
1032
+ "moralises": "moralizes",
1033
+ "moralising": "moralizing",
1034
+ "motorised": "motorized",
1035
+ "mould": "mold",
1036
+ "moulded": "molded",
1037
+ "moulder": "molder",
1038
+ "mouldered": "moldered",
1039
+ "mouldering": "moldering",
1040
+ "moulders": "molders",
1041
+ "mouldier": "moldier",
1042
+ "mouldiest": "moldiest",
1043
+ "moulding": "molding",
1044
+ "mouldings": "moldings",
1045
+ "moulds": "molds",
1046
+ "mouldy": "moldy",
1047
+ "moult": "molt",
1048
+ "moulted": "molted",
1049
+ "moulting": "molting",
1050
+ "moults": "molts",
1051
+ "moustache": "mustache",
1052
+ "moustached": "mustached",
1053
+ "moustaches": "mustaches",
1054
+ "moustachioed": "mustachioed",
1055
+ "multicoloured": "multicolored",
1056
+ "nationalisation": "nationalization",
1057
+ "nationalisations": "nationalizations",
1058
+ "nationalise": "nationalize",
1059
+ "nationalised": "nationalized",
1060
+ "nationalises": "nationalizes",
1061
+ "nationalising": "nationalizing",
1062
+ "naturalisation": "naturalization",
1063
+ "naturalise": "naturalize",
1064
+ "naturalised": "naturalized",
1065
+ "naturalises": "naturalizes",
1066
+ "naturalising": "naturalizing",
1067
+ "neighbour": "neighbor",
1068
+ "neighbourhood": "neighborhood",
1069
+ "neighbourhoods": "neighborhoods",
1070
+ "neighbouring": "neighboring",
1071
+ "neighbourliness": "neighborliness",
1072
+ "neighbourly": "neighborly",
1073
+ "neighbours": "neighbors",
1074
+ "neutralisation": "neutralization",
1075
+ "neutralise": "neutralize",
1076
+ "neutralised": "neutralized",
1077
+ "neutralises": "neutralizes",
1078
+ "neutralising": "neutralizing",
1079
+ "normalisation": "normalization",
1080
+ "normalise": "normalize",
1081
+ "normalised": "normalized",
1082
+ "normalises": "normalizes",
1083
+ "normalising": "normalizing",
1084
+ "odour": "odor",
1085
+ "odourless": "odorless",
1086
+ "odours": "odors",
1087
+ "oesophagus": "esophagus",
1088
+ "oesophaguses": "esophaguses",
1089
+ "oestrogen": "estrogen",
1090
+ "offence": "offense",
1091
+ "offences": "offenses",
1092
+ "omelette": "omelet",
1093
+ "omelettes": "omelets",
1094
+ "optimise": "optimize",
1095
+ "optimised": "optimized",
1096
+ "optimises": "optimizes",
1097
+ "optimising": "optimizing",
1098
+ "organisation": "organization",
1099
+ "organisational": "organizational",
1100
+ "organisations": "organizations",
1101
+ "organise": "organize",
1102
+ "organised": "organized",
1103
+ "organiser": "organizer",
1104
+ "organisers": "organizers",
1105
+ "organises": "organizes",
1106
+ "organising": "organizing",
1107
+ "orthopaedic": "orthopedic",
1108
+ "orthopaedics": "orthopedics",
1109
+ "ostracise": "ostracize",
1110
+ "ostracised": "ostracized",
1111
+ "ostracises": "ostracizes",
1112
+ "ostracising": "ostracizing",
1113
+ "outmanoeuvre": "outmaneuver",
1114
+ "outmanoeuvred": "outmaneuvered",
1115
+ "outmanoeuvres": "outmaneuvers",
1116
+ "outmanoeuvring": "outmaneuvering",
1117
+ "overemphasise": "overemphasize",
1118
+ "overemphasised": "overemphasized",
1119
+ "overemphasises": "overemphasizes",
1120
+ "overemphasising": "overemphasizing",
1121
+ "oxidisation": "oxidization",
1122
+ "oxidise": "oxidize",
1123
+ "oxidised": "oxidized",
1124
+ "oxidises": "oxidizes",
1125
+ "oxidising": "oxidizing",
1126
+ "paederast": "pederast",
1127
+ "paederasts": "pederasts",
1128
+ "paediatric": "pediatric",
1129
+ "paediatrician": "pediatrician",
1130
+ "paediatricians": "pediatricians",
1131
+ "paediatrics": "pediatrics",
1132
+ "paedophile": "pedophile",
1133
+ "paedophiles": "pedophiles",
1134
+ "paedophilia": "pedophilia",
1135
+ "palaeolithic": "paleolithic",
1136
+ "palaeontologist": "paleontologist",
1137
+ "palaeontologists": "paleontologists",
1138
+ "palaeontology": "paleontology",
1139
+ "panelled": "paneled",
1140
+ "panelling": "paneling",
1141
+ "panellist": "panelist",
1142
+ "panellists": "panelists",
1143
+ "paralyse": "paralyze",
1144
+ "paralysed": "paralyzed",
1145
+ "paralyses": "paralyzes",
1146
+ "paralysing": "paralyzing",
1147
+ "parcelled": "parceled",
1148
+ "parcelling": "parceling",
1149
+ "parlour": "parlor",
1150
+ "parlours": "parlors",
1151
+ "particularise": "particularize",
1152
+ "particularised": "particularized",
1153
+ "particularises": "particularizes",
1154
+ "particularising": "particularizing",
1155
+ "passivisation": "passivization",
1156
+ "passivise": "passivize",
1157
+ "passivised": "passivized",
1158
+ "passivises": "passivizes",
1159
+ "passivising": "passivizing",
1160
+ "pasteurisation": "pasteurization",
1161
+ "pasteurise": "pasteurize",
1162
+ "pasteurised": "pasteurized",
1163
+ "pasteurises": "pasteurizes",
1164
+ "pasteurising": "pasteurizing",
1165
+ "patronise": "patronize",
1166
+ "patronised": "patronized",
1167
+ "patronises": "patronizes",
1168
+ "patronising": "patronizing",
1169
+ "patronisingly": "patronizingly",
1170
+ "pedalled": "pedaled",
1171
+ "pedalling": "pedaling",
1172
+ "pedestrianisation": "pedestrianization",
1173
+ "pedestrianise": "pedestrianize",
1174
+ "pedestrianised": "pedestrianized",
1175
+ "pedestrianises": "pedestrianizes",
1176
+ "pedestrianising": "pedestrianizing",
1177
+ "penalise": "penalize",
1178
+ "penalised": "penalized",
1179
+ "penalises": "penalizes",
1180
+ "penalising": "penalizing",
1181
+ "pencilled": "penciled",
1182
+ "pencilling": "penciling",
1183
+ "personalise": "personalize",
1184
+ "personalised": "personalized",
1185
+ "personalises": "personalizes",
1186
+ "personalising": "personalizing",
1187
+ "pharmacopoeia": "pharmacopeia",
1188
+ "pharmacopoeias": "pharmacopeias",
1189
+ "philosophise": "philosophize",
1190
+ "philosophised": "philosophized",
1191
+ "philosophises": "philosophizes",
1192
+ "philosophising": "philosophizing",
1193
+ "philtre": "filter",
1194
+ "philtres": "filters",
1195
+ "phoney": "phony",
1196
+ "plagiarise": "plagiarize",
1197
+ "plagiarised": "plagiarized",
1198
+ "plagiarises": "plagiarizes",
1199
+ "plagiarising": "plagiarizing",
1200
+ "plough": "plow",
1201
+ "ploughed": "plowed",
1202
+ "ploughing": "plowing",
1203
+ "ploughman": "plowman",
1204
+ "ploughmen": "plowmen",
1205
+ "ploughs": "plows",
1206
+ "ploughshare": "plowshare",
1207
+ "ploughshares": "plowshares",
1208
+ "polarisation": "polarization",
1209
+ "polarise": "polarize",
1210
+ "polarised": "polarized",
1211
+ "polarises": "polarizes",
1212
+ "polarising": "polarizing",
1213
+ "politicisation": "politicization",
1214
+ "politicise": "politicize",
1215
+ "politicised": "politicized",
1216
+ "politicises": "politicizes",
1217
+ "politicising": "politicizing",
1218
+ "popularisation": "popularization",
1219
+ "popularise": "popularize",
1220
+ "popularised": "popularized",
1221
+ "popularises": "popularizes",
1222
+ "popularising": "popularizing",
1223
+ "pouffe": "pouf",
1224
+ "pouffes": "poufs",
1225
+ "practise": "practice",
1226
+ "practised": "practiced",
1227
+ "practises": "practices",
1228
+ "practising": "practicing",
1229
+ "praesidium": "presidium",
1230
+ "praesidiums": "presidiums",
1231
+ "pressurisation": "pressurization",
1232
+ "pressurise": "pressurize",
1233
+ "pressurised": "pressurized",
1234
+ "pressurises": "pressurizes",
1235
+ "pressurising": "pressurizing",
1236
+ "pretence": "pretense",
1237
+ "pretences": "pretenses",
1238
+ "primaeval": "primeval",
1239
+ "prioritisation": "prioritization",
1240
+ "prioritise": "prioritize",
1241
+ "prioritised": "prioritized",
1242
+ "prioritises": "prioritizes",
1243
+ "prioritising": "prioritizing",
1244
+ "privatisation": "privatization",
1245
+ "privatisations": "privatizations",
1246
+ "privatise": "privatize",
1247
+ "privatised": "privatized",
1248
+ "privatises": "privatizes",
1249
+ "privatising": "privatizing",
1250
+ "professionalisation": "professionalization",
1251
+ "professionalise": "professionalize",
1252
+ "professionalised": "professionalized",
1253
+ "professionalises": "professionalizes",
1254
+ "professionalising": "professionalizing",
1255
+ "programme": "program",
1256
+ "programmes": "programs",
1257
+ "prologue": "prolog",
1258
+ "prologues": "prologs",
1259
+ "propagandise": "propagandize",
1260
+ "propagandised": "propagandized",
1261
+ "propagandises": "propagandizes",
1262
+ "propagandising": "propagandizing",
1263
+ "proselytise": "proselytize",
1264
+ "proselytised": "proselytized",
1265
+ "proselytiser": "proselytizer",
1266
+ "proselytisers": "proselytizers",
1267
+ "proselytises": "proselytizes",
1268
+ "proselytising": "proselytizing",
1269
+ "psychoanalyse": "psychoanalyze",
1270
+ "psychoanalysed": "psychoanalyzed",
1271
+ "psychoanalyses": "psychoanalyzes",
1272
+ "psychoanalysing": "psychoanalyzing",
1273
+ "publicise": "publicize",
1274
+ "publicised": "publicized",
1275
+ "publicises": "publicizes",
1276
+ "publicising": "publicizing",
1277
+ "pulverisation": "pulverization",
1278
+ "pulverise": "pulverize",
1279
+ "pulverised": "pulverized",
1280
+ "pulverises": "pulverizes",
1281
+ "pulverising": "pulverizing",
1282
+ "pummelled": "pummel",
1283
+ "pummelling": "pummeled",
1284
+ "pyjama": "pajama",
1285
+ "pyjamas": "pajamas",
1286
+ "pzazz": "pizzazz",
1287
+ "quarrelled": "quarreled",
1288
+ "quarrelling": "quarreling",
1289
+ "radicalise": "radicalize",
1290
+ "radicalised": "radicalized",
1291
+ "radicalises": "radicalizes",
1292
+ "radicalising": "radicalizing",
1293
+ "rancour": "rancor",
1294
+ "randomise": "randomize",
1295
+ "randomised": "randomized",
1296
+ "randomises": "randomizes",
1297
+ "randomising": "randomizing",
1298
+ "rationalisation": "rationalization",
1299
+ "rationalisations": "rationalizations",
1300
+ "rationalise": "rationalize",
1301
+ "rationalised": "rationalized",
1302
+ "rationalises": "rationalizes",
1303
+ "rationalising": "rationalizing",
1304
+ "ravelled": "raveled",
1305
+ "ravelling": "raveling",
1306
+ "realisable": "realizable",
1307
+ "realisation": "realization",
1308
+ "realisations": "realizations",
1309
+ "realise": "realize",
1310
+ "realised": "realized",
1311
+ "realises": "realizes",
1312
+ "realising": "realizing",
1313
+ "recognisable": "recognizable",
1314
+ "recognisably": "recognizably",
1315
+ "recognisance": "recognizance",
1316
+ "recognise": "recognize",
1317
+ "recognised": "recognized",
1318
+ "recognises": "recognizes",
1319
+ "recognising": "recognizing",
1320
+ "reconnoitre": "reconnoiter",
1321
+ "reconnoitred": "reconnoitered",
1322
+ "reconnoitres": "reconnoiters",
1323
+ "reconnoitring": "reconnoitering",
1324
+ "refuelled": "refueled",
1325
+ "refuelling": "refueling",
1326
+ "regularisation": "regularization",
1327
+ "regularise": "regularize",
1328
+ "regularised": "regularized",
1329
+ "regularises": "regularizes",
1330
+ "regularising": "regularizing",
1331
+ "remodelled": "remodeled",
1332
+ "remodelling": "remodeling",
1333
+ "remould": "remold",
1334
+ "remoulded": "remolded",
1335
+ "remoulding": "remolding",
1336
+ "remoulds": "remolds",
1337
+ "reorganisation": "reorganization",
1338
+ "reorganisations": "reorganizations",
1339
+ "reorganise": "reorganize",
1340
+ "reorganised": "reorganized",
1341
+ "reorganises": "reorganizes",
1342
+ "reorganising": "reorganizing",
1343
+ "revelled": "reveled",
1344
+ "reveller": "reveler",
1345
+ "revellers": "revelers",
1346
+ "revelling": "reveling",
1347
+ "revitalise": "revitalize",
1348
+ "revitalised": "revitalized",
1349
+ "revitalises": "revitalizes",
1350
+ "revitalising": "revitalizing",
1351
+ "revolutionise": "revolutionize",
1352
+ "revolutionised": "revolutionized",
1353
+ "revolutionises": "revolutionizes",
1354
+ "revolutionising": "revolutionizing",
1355
+ "rhapsodise": "rhapsodize",
1356
+ "rhapsodised": "rhapsodized",
1357
+ "rhapsodises": "rhapsodizes",
1358
+ "rhapsodising": "rhapsodizing",
1359
+ "rigour": "rigor",
1360
+ "rigours": "rigors",
1361
+ "ritualised": "ritualized",
1362
+ "rivalled": "rivaled",
1363
+ "rivalling": "rivaling",
1364
+ "romanticise": "romanticize",
1365
+ "romanticised": "romanticized",
1366
+ "romanticises": "romanticizes",
1367
+ "romanticising": "romanticizing",
1368
+ "rumour": "rumor",
1369
+ "rumoured": "rumored",
1370
+ "rumours": "rumors",
1371
+ "sabre": "saber",
1372
+ "sabres": "sabers",
1373
+ "saltpetre": "saltpeter",
1374
+ "sanitise": "sanitize",
1375
+ "sanitised": "sanitized",
1376
+ "sanitises": "sanitizes",
1377
+ "sanitising": "sanitizing",
1378
+ "satirise": "satirize",
1379
+ "satirised": "satirized",
1380
+ "satirises": "satirizes",
1381
+ "satirising": "satirizing",
1382
+ "saviour": "savior",
1383
+ "saviours": "saviors",
1384
+ "savour": "savor",
1385
+ "savoured": "savored",
1386
+ "savouries": "savories",
1387
+ "savouring": "savoring",
1388
+ "savours": "savors",
1389
+ "savoury": "savory",
1390
+ "scandalise": "scandalize",
1391
+ "scandalised": "scandalized",
1392
+ "scandalises": "scandalizes",
1393
+ "scandalising": "scandalizing",
1394
+ "sceptic": "skeptic",
1395
+ "sceptical": "skeptical",
1396
+ "sceptically": "skeptically",
1397
+ "scepticism": "skepticism",
1398
+ "sceptics": "skeptics",
1399
+ "sceptre": "scepter",
1400
+ "sceptres": "scepters",
1401
+ "scrutinise": "scrutinize",
1402
+ "scrutinised": "scrutinized",
1403
+ "scrutinises": "scrutinizes",
1404
+ "scrutinising": "scrutinizing",
1405
+ "secularisation": "secularization",
1406
+ "secularise": "secularize",
1407
+ "secularised": "secularized",
1408
+ "secularises": "secularizes",
1409
+ "secularising": "secularizing",
1410
+ "sensationalise": "sensationalize",
1411
+ "sensationalised": "sensationalized",
1412
+ "sensationalises": "sensationalizes",
1413
+ "sensationalising": "sensationalizing",
1414
+ "sensitise": "sensitize",
1415
+ "sensitised": "sensitized",
1416
+ "sensitises": "sensitizes",
1417
+ "sensitising": "sensitizing",
1418
+ "sentimentalise": "sentimentalize",
1419
+ "sentimentalised": "sentimentalized",
1420
+ "sentimentalises": "sentimentalizes",
1421
+ "sentimentalising": "sentimentalizing",
1422
+ "sepulchre": "sepulcher",
1423
+ "sepulchres": "sepulchers",
1424
+ "serialisation": "serialization",
1425
+ "serialisations": "serializations",
1426
+ "serialise": "serialize",
1427
+ "serialised": "serialized",
1428
+ "serialises": "serializes",
1429
+ "serialising": "serializing",
1430
+ "sermonise": "sermonize",
1431
+ "sermonised": "sermonized",
1432
+ "sermonises": "sermonizes",
1433
+ "sermonising": "sermonizing",
1434
+ "sheikh": "sheik",
1435
+ "shovelled": "shoveled",
1436
+ "shovelling": "shoveling",
1437
+ "shrivelled": "shriveled",
1438
+ "shrivelling": "shriveling",
1439
+ "signalise": "signalize",
1440
+ "signalised": "signalized",
1441
+ "signalises": "signalizes",
1442
+ "signalising": "signalizing",
1443
+ "signalled": "signaled",
1444
+ "signalling": "signaling",
1445
+ "smoulder": "smolder",
1446
+ "smouldered": "smoldered",
1447
+ "smouldering": "smoldering",
1448
+ "smoulders": "smolders",
1449
+ "snivelled": "sniveled",
1450
+ "snivelling": "sniveling",
1451
+ "snorkelled": "snorkeled",
1452
+ "snorkelling": "snorkeling",
1453
+ "snowplough": "snowplow",
1454
+ "snowploughs": "snowplow",
1455
+ "socialisation": "socialization",
1456
+ "socialise": "socialize",
1457
+ "socialised": "socialized",
1458
+ "socialises": "socializes",
1459
+ "socialising": "socializing",
1460
+ "sodomise": "sodomize",
1461
+ "sodomised": "sodomized",
1462
+ "sodomises": "sodomizes",
1463
+ "sodomising": "sodomizing",
1464
+ "solemnise": "solemnize",
1465
+ "solemnised": "solemnized",
1466
+ "solemnises": "solemnizes",
1467
+ "solemnising": "solemnizing",
1468
+ "sombre": "somber",
1469
+ "specialisation": "specialization",
1470
+ "specialisations": "specializations",
1471
+ "specialise": "specialize",
1472
+ "specialised": "specialized",
1473
+ "specialises": "specializes",
1474
+ "specialising": "specializing",
1475
+ "spectre": "specter",
1476
+ "spectres": "specters",
1477
+ "spiralled": "spiraled",
1478
+ "spiralling": "spiraling",
1479
+ "splendour": "splendor",
1480
+ "splendours": "splendors",
1481
+ "squirrelled": "squirreled",
1482
+ "squirrelling": "squirreling",
1483
+ "stabilisation": "stabilization",
1484
+ "stabilise": "stabilize",
1485
+ "stabilised": "stabilized",
1486
+ "stabiliser": "stabilizer",
1487
+ "stabilisers": "stabilizers",
1488
+ "stabilises": "stabilizes",
1489
+ "stabilising": "stabilizing",
1490
+ "standardisation": "standardization",
1491
+ "standardise": "standardize",
1492
+ "standardised": "standardized",
1493
+ "standardises": "standardizes",
1494
+ "standardising": "standardizing",
1495
+ "stencilled": "stenciled",
1496
+ "stencilling": "stenciling",
1497
+ "sterilisation": "sterilization",
1498
+ "sterilisations": "sterilizations",
1499
+ "sterilise": "sterilize",
1500
+ "sterilised": "sterilized",
1501
+ "steriliser": "sterilizer",
1502
+ "sterilisers": "sterilizers",
1503
+ "sterilises": "sterilizes",
1504
+ "sterilising": "sterilizing",
1505
+ "stigmatisation": "stigmatization",
1506
+ "stigmatise": "stigmatize",
1507
+ "stigmatised": "stigmatized",
1508
+ "stigmatises": "stigmatizes",
1509
+ "stigmatising": "stigmatizing",
1510
+ "storey": "story",
1511
+ "storeys": "stories",
1512
+ "subsidisation": "subsidization",
1513
+ "subsidise": "subsidize",
1514
+ "subsidised": "subsidized",
1515
+ "subsidiser": "subsidizer",
1516
+ "subsidisers": "subsidizers",
1517
+ "subsidises": "subsidizes",
1518
+ "subsidising": "subsidizing",
1519
+ "succour": "succor",
1520
+ "succoured": "succored",
1521
+ "succouring": "succoring",
1522
+ "succours": "succors",
1523
+ "sulphate": "sulfate",
1524
+ "sulphates": "sulfates",
1525
+ "sulphide": "sulfide",
1526
+ "sulphides": "sulfides",
1527
+ "sulphur": "sulfur",
1528
+ "sulphurous": "sulfurous",
1529
+ "summarise": "summarize",
1530
+ "summarised": "summarized",
1531
+ "summarises": "summarizes",
1532
+ "summarising": "summarizing",
1533
+ "swivelled": "swiveled",
1534
+ "swivelling": "swiveling",
1535
+ "symbolise": "symbolize",
1536
+ "symbolised": "symbolized",
1537
+ "symbolises": "symbolizes",
1538
+ "symbolising": "symbolizing",
1539
+ "sympathise": "sympathize",
1540
+ "sympathised": "sympathized",
1541
+ "sympathiser": "sympathizer",
1542
+ "sympathisers": "sympathizers",
1543
+ "sympathises": "sympathizes",
1544
+ "sympathising": "sympathizing",
1545
+ "synchronisation": "synchronization",
1546
+ "synchronise": "synchronize",
1547
+ "synchronised": "synchronized",
1548
+ "synchronises": "synchronizes",
1549
+ "synchronising": "synchronizing",
1550
+ "synthesise": "synthesize",
1551
+ "synthesised": "synthesized",
1552
+ "synthesiser": "synthesizer",
1553
+ "synthesisers": "synthesizers",
1554
+ "synthesises": "synthesizes",
1555
+ "synthesising": "synthesizing",
1556
+ "syphon": "siphon",
1557
+ "syphoned": "siphoned",
1558
+ "syphoning": "siphoning",
1559
+ "syphons": "siphons",
1560
+ "systematisation": "systematization",
1561
+ "systematise": "systematize",
1562
+ "systematised": "systematized",
1563
+ "systematises": "systematizes",
1564
+ "systematising": "systematizing",
1565
+ "tantalise": "tantalize",
1566
+ "tantalised": "tantalized",
1567
+ "tantalises": "tantalizes",
1568
+ "tantalising": "tantalizing",
1569
+ "tantalisingly": "tantalizingly",
1570
+ "tasselled": "tasseled",
1571
+ "technicolour": "technicolor",
1572
+ "temporise": "temporize",
1573
+ "temporised": "temporized",
1574
+ "temporises": "temporizes",
1575
+ "temporising": "temporizing",
1576
+ "tenderise": "tenderize",
1577
+ "tenderised": "tenderized",
1578
+ "tenderises": "tenderizes",
1579
+ "tenderising": "tenderizing",
1580
+ "terrorise": "terrorize",
1581
+ "terrorised": "terrorized",
1582
+ "terrorises": "terrorizes",
1583
+ "terrorising": "terrorizing",
1584
+ "theatre": "theater",
1585
+ "theatregoer": "theatergoer",
1586
+ "theatregoers": "theatergoers",
1587
+ "theatres": "theaters",
1588
+ "theorise": "theorize",
1589
+ "theorised": "theorized",
1590
+ "theorises": "theorizes",
1591
+ "theorising": "theorizing",
1592
+ "tonne": "ton",
1593
+ "tonnes": "tons",
1594
+ "towelled": "toweled",
1595
+ "towelling": "toweling",
1596
+ "toxaemia": "toxemia",
1597
+ "tranquillise": "tranquilize",
1598
+ "tranquillised": "tranquilized",
1599
+ "tranquilliser": "tranquilizer",
1600
+ "tranquillisers": "tranquilizers",
1601
+ "tranquillises": "tranquilizes",
1602
+ "tranquillising": "tranquilizing",
1603
+ "tranquillity": "tranquility",
1604
+ "tranquillize": "tranquilize",
1605
+ "tranquillized": "tranquilized",
1606
+ "tranquillizer": "tranquilizer",
1607
+ "tranquillizers": "tranquilizers",
1608
+ "tranquillizes": "tranquilizes",
1609
+ "tranquillizing": "tranquilizing",
1610
+ "tranquilly": "tranquility",
1611
+ "transistorised": "transistorized",
1612
+ "traumatise": "traumatize",
1613
+ "traumatised": "traumatized",
1614
+ "traumatises": "traumatizes",
1615
+ "traumatising": "traumatizing",
1616
+ "travelled": "traveled",
1617
+ "traveller": "traveler",
1618
+ "travellers": "travelers",
1619
+ "travelling": "traveling",
1620
+ "travelog": "travelogue",
1621
+ "travelogs": "travelogues",
1622
+ "trialled": "trialed",
1623
+ "trialling": "trialing",
1624
+ "tricolour": "tricolor",
1625
+ "tricolours": "tricolors",
1626
+ "trivialise": "trivialize",
1627
+ "trivialised": "trivialized",
1628
+ "trivialises": "trivializes",
1629
+ "trivialising": "trivializing",
1630
+ "tumour": "tumor",
1631
+ "tumours": "tumors",
1632
+ "tunnelled": "tunneled",
1633
+ "tunnelling": "tunneling",
1634
+ "tyrannise": "tyrannize",
1635
+ "tyrannised": "tyrannized",
1636
+ "tyrannises": "tyrannizes",
1637
+ "tyrannising": "tyrannizing",
1638
+ "tyre": "tire",
1639
+ "tyres": "tires",
1640
+ "unauthorised": "unauthorized",
1641
+ "uncivilised": "uncivilized",
1642
+ "underutilised": "underutilized",
1643
+ "unequalled": "unequaled",
1644
+ "unfavourable": "unfavorable",
1645
+ "unfavourably": "unfavorably",
1646
+ "unionisation": "unionization",
1647
+ "unionise": "unionize",
1648
+ "unionised": "unionized",
1649
+ "unionises": "unionizes",
1650
+ "unionising": "unionizing",
1651
+ "unorganised": "unorganized",
1652
+ "unravelled": "unraveled",
1653
+ "unravelling": "unraveling",
1654
+ "unrecognisable": "unrecognizable",
1655
+ "unrecognised": "unrecognized",
1656
+ "unrivalled": "unrivaled",
1657
+ "unsavoury": "unsavory",
1658
+ "untrammelled": "untrammeled",
1659
+ "urbanisation": "urbanization",
1660
+ "urbanise": "urbanize",
1661
+ "urbanised": "urbanized",
1662
+ "urbanises": "urbanizes",
1663
+ "urbanising": "urbanizing",
1664
+ "utilisable": "utilizable",
1665
+ "utilisation": "utilization",
1666
+ "utilise": "utilize",
1667
+ "utilised": "utilized",
1668
+ "utilises": "utilizes",
1669
+ "utilising": "utilizing",
1670
+ "valour": "valor",
1671
+ "vandalise": "vandalize",
1672
+ "vandalised": "vandalized",
1673
+ "vandalises": "vandalizes",
1674
+ "vandalising": "vandalizing",
1675
+ "vaporisation": "vaporization",
1676
+ "vaporise": "vaporize",
1677
+ "vaporised": "vaporized",
1678
+ "vaporises": "vaporizes",
1679
+ "vaporising": "vaporizing",
1680
+ "vapour": "vapor",
1681
+ "vapours": "vapors",
1682
+ "verbalise": "verbalize",
1683
+ "verbalised": "verbalized",
1684
+ "verbalises": "verbalizes",
1685
+ "verbalising": "verbalizing",
1686
+ "victimisation": "victimization",
1687
+ "victimise": "victimize",
1688
+ "victimised": "victimized",
1689
+ "victimises": "victimizes",
1690
+ "victimising": "victimizing",
1691
+ "videodisc": "videodisk",
1692
+ "videodiscs": "videodisks",
1693
+ "vigour": "vigor",
1694
+ "visualisation": "visualization",
1695
+ "visualisations": "visualizations",
1696
+ "visualise": "visualize",
1697
+ "visualised": "visualized",
1698
+ "visualises": "visualizes",
1699
+ "visualising": "visualizing",
1700
+ "vocalisation": "vocalization",
1701
+ "vocalisations": "vocalizations",
1702
+ "vocalise": "vocalize",
1703
+ "vocalised": "vocalized",
1704
+ "vocalises": "vocalizes",
1705
+ "vocalising": "vocalizing",
1706
+ "vulcanised": "vulcanized",
1707
+ "vulgarisation": "vulgarization",
1708
+ "vulgarise": "vulgarize",
1709
+ "vulgarised": "vulgarized",
1710
+ "vulgarises": "vulgarizes",
1711
+ "vulgarising": "vulgarizing",
1712
+ "waggon": "wagon",
1713
+ "waggons": "wagons",
1714
+ "watercolour": "watercolor",
1715
+ "watercolours": "watercolors",
1716
+ "weaselled": "weaseled",
1717
+ "weaselling": "weaseling",
1718
+ "westernisation": "westernization",
1719
+ "westernise": "westernize",
1720
+ "westernised": "westernized",
1721
+ "westernises": "westernizes",
1722
+ "westernising": "westernizing",
1723
+ "womanise": "womanize",
1724
+ "womanised": "womanized",
1725
+ "womaniser": "womanizer",
1726
+ "womanisers": "womanizers",
1727
+ "womanises": "womanizes",
1728
+ "womanising": "womanizing",
1729
+ "woollen": "woolen",
1730
+ "woollens": "woolens",
1731
+ "woollies": "woolies",
1732
+ "woolly": "wooly",
1733
+ "worshipped": "worshiped",
1734
+ "worshipper": "worshiper",
1735
+ "worshipping": "worshiping",
1736
+ "yodelled": "yodeled",
1737
+ "yodelling": "yodeling",
1738
+ "yoghourt": "yogurt",
1739
+ "yoghourts": "yogurts",
1740
+ "yoghurt": "yogurt",
1741
+ "yoghurts": "yogurts"
1742
+ }
preprocessor_config.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|startoftranscript|>",
4
+ "<|en|>",
5
+ "<|zh|>",
6
+ "<|de|>",
7
+ "<|es|>",
8
+ "<|ru|>",
9
+ "<|ko|>",
10
+ "<|fr|>",
11
+ "<|ja|>",
12
+ "<|pt|>",
13
+ "<|tr|>",
14
+ "<|pl|>",
15
+ "<|ca|>",
16
+ "<|nl|>",
17
+ "<|ar|>",
18
+ "<|sv|>",
19
+ "<|it|>",
20
+ "<|id|>",
21
+ "<|hi|>",
22
+ "<|fi|>",
23
+ "<|vi|>",
24
+ "<|iw|>",
25
+ "<|uk|>",
26
+ "<|el|>",
27
+ "<|ms|>",
28
+ "<|cs|>",
29
+ "<|ro|>",
30
+ "<|da|>",
31
+ "<|hu|>",
32
+ "<|ta|>",
33
+ "<|no|>",
34
+ "<|th|>",
35
+ "<|ur|>",
36
+ "<|hr|>",
37
+ "<|bg|>",
38
+ "<|lt|>",
39
+ "<|la|>",
40
+ "<|mi|>",
41
+ "<|ml|>",
42
+ "<|cy|>",
43
+ "<|sk|>",
44
+ "<|te|>",
45
+ "<|fa|>",
46
+ "<|lv|>",
47
+ "<|bn|>",
48
+ "<|sr|>",
49
+ "<|az|>",
50
+ "<|sl|>",
51
+ "<|kn|>",
52
+ "<|et|>",
53
+ "<|mk|>",
54
+ "<|br|>",
55
+ "<|eu|>",
56
+ "<|is|>",
57
+ "<|hy|>",
58
+ "<|ne|>",
59
+ "<|mn|>",
60
+ "<|bs|>",
61
+ "<|kk|>",
62
+ "<|sq|>",
63
+ "<|sw|>",
64
+ "<|gl|>",
65
+ "<|mr|>",
66
+ "<|pa|>",
67
+ "<|si|>",
68
+ "<|km|>",
69
+ "<|sn|>",
70
+ "<|yo|>",
71
+ "<|so|>",
72
+ "<|af|>",
73
+ "<|oc|>",
74
+ "<|ka|>",
75
+ "<|be|>",
76
+ "<|tg|>",
77
+ "<|sd|>",
78
+ "<|gu|>",
79
+ "<|am|>",
80
+ "<|yi|>",
81
+ "<|lo|>",
82
+ "<|uz|>",
83
+ "<|fo|>",
84
+ "<|ht|>",
85
+ "<|ps|>",
86
+ "<|tk|>",
87
+ "<|nn|>",
88
+ "<|mt|>",
89
+ "<|sa|>",
90
+ "<|lb|>",
91
+ "<|my|>",
92
+ "<|bo|>",
93
+ "<|tl|>",
94
+ "<|mg|>",
95
+ "<|as|>",
96
+ "<|tt|>",
97
+ "<|haw|>",
98
+ "<|ln|>",
99
+ "<|ha|>",
100
+ "<|ba|>",
101
+ "<|jw|>",
102
+ "<|su|>",
103
+ "<|translate|>",
104
+ "<|transcribe|>",
105
+ "<|startoflm|>",
106
+ "<|startofprev|>",
107
+ "<|nocaptions|>",
108
+ "<|notimestamps|>"
109
+ ],
110
+ "bos_token": {
111
+ "content": "<|endoftext|>",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false
116
+ },
117
+ "eos_token": "<|endoftext|>",
118
+ "pad_token": "<|endoftext|>",
119
+ "unk_token": "<|endoftext|>"
120
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": true,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "<|endoftext|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "errors": "replace",
22
+ "model_max_length": 1024,
23
+ "pad_token": null,
24
+ "processor_class": "WhisperProcessor",
25
+ "return_attention_mask": false,
26
+ "tokenizer_class": "WhisperTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<|endoftext|>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff