File size: 6,684 Bytes
d664816 5f99e2d d664816 5f99e2d 2fa5dd7 5f99e2d 3fcf89c 5f99e2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
---
license: mit
tags:
- sentence-embeddings
- endpoints-template
- optimum
library_name: generic
---
# Optimized and Quantized [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) with a custom pipeline.py
This repository implements a `custom` task for `sentence-embeddings` for 🤗 Inference Endpoints for accelerated inference using [🤗 Optimum](https://huggingface.co/docs/optimum/index). The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/all-MiniLM-L6-v2-optimum-embeddings/blob/main/pipeline.py).
In the [how to create your own optimized and quantized model](#how-to-create-your-own-optimized-and-quantized-model) you will learn how the model was converted & optimized, it is based on the [Accelerate Sentence Transformers with Hugging Face Optimum](https://www.philschmid.de/optimize-sentence-transformers) blog post. It also includes how to create your custom pipeline and test it. There is also a [notebook](https://huggingface.co/philschmid/all-MiniLM-L6-v2-optimum-embeddings/blob/main/convert.ipynb) included.
To use deploy this model a an Inference Endpoint you have to select `Custom` as task to use the `pipeline.py` file. -> _double check if it is selected_
### expected Request payload
```json
{
"inputs": "The sky is a blue today and not gray",
}
```
below is an example on how to run a request using Python and `requests`.
## Run Request
```python
import json
from typing import List
import requests as r
import base64
ENDPOINT_URL = ""
HF_TOKEN = ""
def predict(document_string:str=None):
payload = {"inputs": document_string}
response = r.post(
ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json=payload
)
return response.json()
prediction = predict(
path_to_image="The sky is a blue today and not gray"
)
```
expected output
```python
{'embeddings': [[-0.021580450236797333,
0.021715054288506508,
0.00979710929095745,
-0.0005379787762649357,
0.04682469740509987,
-0.013600599952042103,
...
}
```
## How to create your own optimized and quantized model
Steps:
[1. Convert model to ONNX](#1-convert-model-to-onnx)
[2. Optimize & quantize model with Optimum](#2-optimize--quantize-model-with-optimum)
[3. Create Custom Handler for Inference Endpoints](#3-create-custom-handler-for-inference-endpoints)
Helpful links:
* [Accelerate Sentence Transformers with Hugging Face Optimum](https://www.philschmid.de/optimize-sentence-transformers)
* [Create Custom Handler Endpoints](https://link-to-docs)
## Setup & Installation
```python
%%writefile requirements.txt
optimum[onnxruntime]==1.3.0
mkl-include
mkl
```
install requirements
```python
!pip install -r requirements.txt
```
## 1. Convert model to ONNX
```python
from optimum.onnxruntime import ORTModelForFeatureExtraction
from transformers import AutoTokenizer
from pathlib import Path
model_id="sentence-transformers/all-MiniLM-L6-v2"
onnx_path = Path(".")
# load vanilla transformers and convert to onnx
model = ORTModelForFeatureExtraction.from_pretrained(model_id, from_transformers=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# save onnx checkpoint and tokenizer
model.save_pretrained(onnx_path)
tokenizer.save_pretrained(onnx_path)
```
## 2. Optimize & quantize model with Optimum
```python
from optimum.onnxruntime import ORTOptimizer, ORTQuantizer
from optimum.onnxruntime.configuration import OptimizationConfig, AutoQuantizationConfig
# create ORTOptimizer and define optimization configuration
optimizer = ORTOptimizer.from_pretrained(model_id, feature=model.pipeline_task)
optimization_config = OptimizationConfig(optimization_level=99) # enable all optimizations
# apply the optimization configuration to the model
optimizer.export(
onnx_model_path=onnx_path / "model.onnx",
onnx_optimized_model_output_path=onnx_path / "model-optimized.onnx",
optimization_config=optimization_config,
)
# create ORTQuantizer and define quantization configuration
dynamic_quantizer = ORTQuantizer.from_pretrained(model_id, feature=model.pipeline_task)
dqconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=False)
# apply the quantization configuration to the model
model_quantized_path = dynamic_quantizer.export(
onnx_model_path=onnx_path / "model-optimized.onnx",
onnx_quantized_model_output_path=onnx_path / "model-quantized.onnx",
quantization_config=dqconfig,
)
```
## 3. Create Custom Handler for Inference Endpoints
```python
%%writefile pipeline.py
from typing import Dict, List, Any
from optimum.onnxruntime import ORTModelForFeatureExtraction
from transformers import AutoTokenizer
import torch.nn.functional as F
import torch
# copied from the model card
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
class PreTrainedPipeline():
def __init__(self, path=""):
# load the optimized model
self.model = ORTModelForFeatureExtraction.from_pretrained(path, file_name="model-quantized.onnx")
self.tokenizer = AutoTokenizer.from_pretrained(path)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`list`:. The list contains the embeddings of the inference inputs
"""
inputs = data.get("inputs", data)
# tokenize the input
encoded_inputs = self.tokenizer(inputs, padding=True, truncation=True, return_tensors='pt')
# run the model
outputs = self.model(**encoded_inputs)
# Perform pooling
sentence_embeddings = mean_pooling(outputs, encoded_inputs['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
# postprocess the prediction
return {"embeddings": sentence_embeddings.tolist()}
```
test custom pipeline
```python
from pipeline import PreTrainedPipeline
# init handler
my_handler = PreTrainedPipeline(path=".")
# prepare sample payload
request = {"inputs": "I am quite excited how this will turn out"}
# test the handler
%timeit my_handler(request)
```
results
```
1.55 ms ± 2.04 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
```
|