from typing import Dict, List, Any from optimum.onnxruntime import ORTModelForFeatureExtraction from transformers import pipeline, AutoTokenizer class PreTrainedPipeline(): def __init__(self, path=""): # load the optimized model model = ORTModelForFeatureExtraction.from_pretrained(path) tokenizer = AutoTokenizer.from_pretrained(path, model_max_length=128) # create inference pipeline self.pipeline = pipeline("feature-extraction", model=model, tokenizer=tokenizer) def __call__(self, inputs: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:`str`): a string containing some text Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ # pop inputs for pipeline def cls_pooling(pipeline_output): """ Return the [CLS] token embedding """ return [_h[0] for _h in pipeline_output] embeddings = cls_pooling(self.pipeline(inputs)) return {"vectors": embeddings}