phonenix commited on
Commit
5631709
·
1 Parent(s): 6c285c1

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.68 +/- 2.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caf8152fa8a7ad99b5b96e88749138dbf808115a084239fac52d2d311426a3a4
3
+ size 108014
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fab0c9635e0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fab0c964400>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 500000,
45
+ "_total_timesteps": 500000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678391948869691695,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAAFTdPu7lDj3+EAw/AFTdPu7lDj3+EAw/AFTdPu7lDj3+EAw/AFTdPu7lDj3+EAw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJAA/P6OjMz+aBnQ/z3PyvSA5IL9bqcg/uEu+P2tHCT9MXNq+D83Uv0+zF7/kmma/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAAVN0+7uUOPf4QDD/n5hE7pRqCOwh/VrsAVN0+7uUOPf4QDD/n5hE7pRqCOwh/VrsAVN0+7uUOPf4QDD/n5hE7pRqCOwh/VrsAVN0+7uUOPf4QDD/n5hE7pRqCOwh/VruUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.4322815 0.03488725 0.5471343 ]\n [0.4322815 0.03488725 0.5471343 ]\n [0.4322815 0.03488725 0.5471343 ]\n [0.4322815 0.03488725 0.5471343 ]]",
60
+ "desired_goal": "[[ 0.7460959 0.70171565 0.95322573]\n [-0.11838495 -0.62587166 1.5676683 ]\n [ 1.4866858 0.536246 -0.42648542]\n [-1.6625079 -0.5925798 -0.90080094]]",
61
+ "observation": "[[ 0.4322815 0.03488725 0.5471343 0.00222629 0.00397046 -0.00327295]\n [ 0.4322815 0.03488725 0.5471343 0.00222629 0.00397046 -0.00327295]\n [ 0.4322815 0.03488725 0.5471343 0.00222629 0.00397046 -0.00327295]\n [ 0.4322815 0.03488725 0.5471343 0.00222629 0.00397046 -0.00327295]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8Bu9PJT8EL5QbXg+On8Qvh1Y8D1VV4M+6hCGvX762D3ihhM+JBuIvWHzBL5pHCg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.02308461 -0.14158851 0.2426045 ]\n [-0.14111033 0.11735556 0.25652567]\n [-0.06546195 0.10594653 0.14406922]\n [-0.06645802 -0.12983467 0.04104272]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkGXBxB9lAMCUhpRSlIwBbJRLMowBdJRHQJlPthsqJ/J1fZQoaAZoCWgPQwhBSuza3u4AwJSGlFKUaBVLMmgWR0CZTzk2P1cudX2UKGgGaAloD0MIEvqZet2CA8CUhpRSlGgVSzJoFkdAmU67pJPIn3V9lChoBmgJaA9DCHGPpQ9d0APAlIaUUpRoFUsyaBZHQJlONO2y9mJ1fZQoaAZoCWgPQwgxem6hKzETwJSGlFKUaBVLMmgWR0CZU7BTGYKIdX2UKGgGaAloD0MIy52ZYDiHHMCUhpRSlGgVSzJoFkdAmVMztgKF7HV9lChoBmgJaA9DCONuEK0VDQPAlIaUUpRoFUsyaBZHQJlStu3trsV1fZQoaAZoCWgPQwiTOZZ31cMIwJSGlFKUaBVLMmgWR0CZUjGLUCq7dX2UKGgGaAloD0MIsWoQ5nZv9r+UhpRSlGgVSzJoFkdAmVfXHWBjF3V9lChoBmgJaA9DCBxfe2ZJIALAlIaUUpRoFUsyaBZHQJlXWon8baR1fZQoaAZoCWgPQwhgBfhu8+YAwJSGlFKUaBVLMmgWR0CZVuAYYR/WdX2UKGgGaAloD0MIfcucLovJ9L+UhpRSlGgVSzJoFkdAmVZZlnRLK3V9lChoBmgJaA9DCFw8vOfAcuu/lIaUUpRoFUsyaBZHQJlb+kbgjyF1fZQoaAZoCWgPQwhKmj+mtWkdwJSGlFKUaBVLMmgWR0CZW33Dej20dX2UKGgGaAloD0MI1QRR9wEoCMCUhpRSlGgVSzJoFkdAmVr//7zkIXV9lChoBmgJaA9DCMcpOpLL//S/lIaUUpRoFUsyaBZHQJlaeXJHRTl1fZQoaAZoCWgPQwjs2t5uSU4LwJSGlFKUaBVLMmgWR0CZXvXu3MINdX2UKGgGaAloD0MIOL72zJLA/b+UhpRSlGgVSzJoFkdAmV53SjQAuXV9lChoBmgJaA9DCNo391ePO/u/lIaUUpRoFUsyaBZHQJld96t1ZDB1fZQoaAZoCWgPQwiK5gEs8ssJwJSGlFKUaBVLMmgWR0CZXW+jua4MdX2UKGgGaAloD0MIrfpcbcX+B8CUhpRSlGgVSzJoFkdAmWFhD9fkWHV9lChoBmgJaA9DCO/Jw0KtKR3AlIaUUpRoFUsyaBZHQJlg4qpcX3x1fZQoaAZoCWgPQwiu00hL5S35v5SGlFKUaBVLMmgWR0CZYGLKmsNldX2UKGgGaAloD0MIqdpugm8aCMCUhpRSlGgVSzJoFkdAmV/aT0QK8nV9lChoBmgJaA9DCPzjvWplUhPAlIaUUpRoFUsyaBZHQJljwmUnogV1fZQoaAZoCWgPQwjNkgA1tRQgwJSGlFKUaBVLMmgWR0CZY0O3lS0jdX2UKGgGaAloD0MIhA1Pr5TVEcCUhpRSlGgVSzJoFkdAmWLEGzKLbnV9lChoBmgJaA9DCKlKW1zjcwXAlIaUUpRoFUsyaBZHQJliO8Zk0791fZQoaAZoCWgPQwhFLGLYYcz+v5SGlFKUaBVLMmgWR0CZZhubqhUSdX2UKGgGaAloD0MI4ICWrmDLEcCUhpRSlGgVSzJoFkdAmWWc7ZFoc3V9lChoBmgJaA9DCA6IEFfOXu+/lIaUUpRoFUsyaBZHQJllHLowEhd1fZQoaAZoCWgPQwgDzefc7RoDwJSGlFKUaBVLMmgWR0CZZJPyCnP3dX2UKGgGaAloD0MIRkQxeQNMCMCUhpRSlGgVSzJoFkdAmWhjgIhQnHV9lChoBmgJaA9DCOtWz0nvyxXAlIaUUpRoFUsyaBZHQJln5Nucc2l1fZQoaAZoCWgPQwhuUtFY+zsNwJSGlFKUaBVLMmgWR0CZZ2U1yeZodX2UKGgGaAloD0MIEyf3OxRVEsCUhpRSlGgVSzJoFkdAmWbcfNiYs3V9lChoBmgJaA9DCPj+Bu3VhxTAlIaUUpRoFUsyaBZHQJlqpHAh0Qt1fZQoaAZoCWgPQwjdQlciUH3yv5SGlFKUaBVLMmgWR0CZaiWMju8cdX2UKGgGaAloD0MIgQabOo/qAMCUhpRSlGgVSzJoFkdAmWmlZPl+3HV9lChoBmgJaA9DCCl7SzlfTAPAlIaUUpRoFUsyaBZHQJlpHR3NcGF1fZQoaAZoCWgPQwgvGcdI9kgdwJSGlFKUaBVLMmgWR0CZbQNEw35vdX2UKGgGaAloD0MIA0TBjCkY97+UhpRSlGgVSzJoFkdAmWyEaESM+HV9lChoBmgJaA9DCPAw7Zv76wbAlIaUUpRoFUsyaBZHQJlsBPxhDw91fZQoaAZoCWgPQwj9EvHW+bcAwJSGlFKUaBVLMmgWR0CZa3xG2CumdX2UKGgGaAloD0MIvJUlOssMHMCUhpRSlGgVSzJoFkdAmW9AnhKlHnV9lChoBmgJaA9DCOscA7LXOwnAlIaUUpRoFUsyaBZHQJluwaZQYUF1fZQoaAZoCWgPQwhn8WJhiBz8v5SGlFKUaBVLMmgWR0CZbkG0eEIxdX2UKGgGaAloD0MIjpWYZyVND8CUhpRSlGgVSzJoFkdAmW24eYD1XnV9lChoBmgJaA9DCL8qFyr/WgTAlIaUUpRoFUsyaBZHQJlxhEa2nbZ1fZQoaAZoCWgPQwgwuycPCxUZwJSGlFKUaBVLMmgWR0CZcQU+s5n2dX2UKGgGaAloD0MIOpUMAFX8CsCUhpRSlGgVSzJoFkdAmXCFJg9eQnV9lChoBmgJaA9DCBWqm4u/7fS/lIaUUpRoFUsyaBZHQJlv/Gm1pkB1fZQoaAZoCWgPQwhVouwt5TwAwJSGlFKUaBVLMmgWR0CZc9c8kleGdX2UKGgGaAloD0MI0Xr4MlGUF8CUhpRSlGgVSzJoFkdAmXNYrnTy8XV9lChoBmgJaA9DCJ+Sc2IPrfu/lIaUUpRoFUsyaBZHQJly2QV9F4N1fZQoaAZoCWgPQwg0MPKyJoYRwJSGlFKUaBVLMmgWR0CZclCj1wo9dX2UKGgGaAloD0MI9Bd6xOipH8CUhpRSlGgVSzJoFkdAmXYd65XlsHV9lChoBmgJaA9DCAjovpzZTgnAlIaUUpRoFUsyaBZHQJl1nuKGcnV1fZQoaAZoCWgPQwgnh086kQABwJSGlFKUaBVLMmgWR0CZdR7N0NjLdX2UKGgGaAloD0MIJ4QOuoTDEMCUhpRSlGgVSzJoFkdAmXSWSZBsynV9lChoBmgJaA9DCJgYy/RLBPS/lIaUUpRoFUsyaBZHQJl4dqrR0EJ1fZQoaAZoCWgPQwhm2CjrN9MBwJSGlFKUaBVLMmgWR0CZd/gLJCBxdX2UKGgGaAloD0MIQDTz5JpC/7+UhpRSlGgVSzJoFkdAmXd4Ju2qk3V9lChoBmgJaA9DCCMWMewwJv2/lIaUUpRoFUsyaBZHQJl274EfT1F1fZQoaAZoCWgPQwh7vJAOD+H4v5SGlFKUaBVLMmgWR0CZer6tknTidX2UKGgGaAloD0MIHccPlUaMCMCUhpRSlGgVSzJoFkdAmXo/+S8rZ3V9lChoBmgJaA9DCI1hTtAmhwjAlIaUUpRoFUsyaBZHQJl5wE3bVSZ1fZQoaAZoCWgPQwiwql5+p8n3v5SGlFKUaBVLMmgWR0CZeTe9Ba9sdX2UKGgGaAloD0MImGiQgqeQFcCUhpRSlGgVSzJoFkdAmX0IdELH/HV9lChoBmgJaA9DCMNmgAuyRQrAlIaUUpRoFUsyaBZHQJl8iYu01Il1fZQoaAZoCWgPQwhB9KRMaggTwJSGlFKUaBVLMmgWR0CZfAn3ta6jdX2UKGgGaAloD0MIDYy8rIlFAsCUhpRSlGgVSzJoFkdAmXuB9Tgl4XV9lChoBmgJaA9DCHnNqzqrpQzAlIaUUpRoFUsyaBZHQJl/PndO6/Z1fZQoaAZoCWgPQwgZO+ElOMUTwJSGlFKUaBVLMmgWR0CZfr/WDpTudX2UKGgGaAloD0MIsyWrItwUEcCUhpRSlGgVSzJoFkdAmX4/yGzrvHV9lChoBmgJaA9DCBfZzvdTIwXAlIaUUpRoFUsyaBZHQJl9t4X40uV1fZQoaAZoCWgPQwgt7j8yHToCwJSGlFKUaBVLMmgWR0CZgYpSJj2BdX2UKGgGaAloD0MImu0KfbBcGMCUhpRSlGgVSzJoFkdAmYELiIcin3V9lChoBmgJaA9DCLFSQUXVbwDAlIaUUpRoFUsyaBZHQJmAi7Bfrrx1fZQoaAZoCWgPQwg8akyIuaTyv5SGlFKUaBVLMmgWR0CZgAL4N7SidX2UKGgGaAloD0MIU8prJXTXDMCUhpRSlGgVSzJoFkdAmYO9+so2GnV9lChoBmgJaA9DCDLIXYQpygTAlIaUUpRoFUsyaBZHQJmDP27FsHl1fZQoaAZoCWgPQwjEJjJzgcsOwJSGlFKUaBVLMmgWR0CZgr+bmU4adX2UKGgGaAloD0MI7l2DvvQ2/L+UhpRSlGgVSzJoFkdAmYI3A6+36XV9lChoBmgJaA9DCOS/QBAgowDAlIaUUpRoFUsyaBZHQJmGW1XvH951fZQoaAZoCWgPQwjbFmU2yOQGwJSGlFKUaBVLMmgWR0CZhd5xiobXdX2UKGgGaAloD0MIhGQBE7j1/7+UhpRSlGgVSzJoFkdAmYVgiFCb+nV9lChoBmgJaA9DCFysqME0TPa/lIaUUpRoFUsyaBZHQJmE2UOd5IJ1fZQoaAZoCWgPQwgt6L0xBJAYwJSGlFKUaBVLMmgWR0CZih4mCyyEdX2UKGgGaAloD0MIYYvdPqsMAsCUhpRSlGgVSzJoFkdAmYmg9ic5KnV9lChoBmgJaA9DCJSkaybfDBHAlIaUUpRoFUsyaBZHQJmJI0bcXWR1fZQoaAZoCWgPQwhcdLLUej8BwJSGlFKUaBVLMmgWR0CZiJwFkhA4dX2UKGgGaAloD0MI9IdmnlwTFMCUhpRSlGgVSzJoFkdAmY36yGBWgnV9lChoBmgJaA9DCPRuLCgMagDAlIaUUpRoFUsyaBZHQJmNfjPv8ZV1fZQoaAZoCWgPQwiZm29E96wKwJSGlFKUaBVLMmgWR0CZjQCkoF3ZdX2UKGgGaAloD0MI1A0UeCdfCcCUhpRSlGgVSzJoFkdAmYx6g7HQyHV9lChoBmgJaA9DCLHc0mpIHPy/lIaUUpRoFUsyaBZHQJmSPHbRF7V1fZQoaAZoCWgPQwgwgsZMov4FwJSGlFKUaBVLMmgWR0CZkb/RVp9JdX2UKGgGaAloD0MI9uy5TE0CC8CUhpRSlGgVSzJoFkdAmZFCKaXrt3V9lChoBmgJaA9DCOLLRBFSN/e/lIaUUpRoFUsyaBZHQJmQu4ZuQ6p1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 25000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47594f017e83a3660cd086dd4b4e39483e173eb605204d8e1f302ed29a2616ec
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32534396fc7d8437bcef51f7dc2c8980d9431b744b1e28ae2a439ce09f837d4d
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fab0c9635e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fab0c964400>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678391948869691695, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAAFTdPu7lDj3+EAw/AFTdPu7lDj3+EAw/AFTdPu7lDj3+EAw/AFTdPu7lDj3+EAw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJAA/P6OjMz+aBnQ/z3PyvSA5IL9bqcg/uEu+P2tHCT9MXNq+D83Uv0+zF7/kmma/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAAVN0+7uUOPf4QDD/n5hE7pRqCOwh/VrsAVN0+7uUOPf4QDD/n5hE7pRqCOwh/VrsAVN0+7uUOPf4QDD/n5hE7pRqCOwh/VrsAVN0+7uUOPf4QDD/n5hE7pRqCOwh/VruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4322815 0.03488725 0.5471343 ]\n [0.4322815 0.03488725 0.5471343 ]\n [0.4322815 0.03488725 0.5471343 ]\n [0.4322815 0.03488725 0.5471343 ]]", "desired_goal": "[[ 0.7460959 0.70171565 0.95322573]\n [-0.11838495 -0.62587166 1.5676683 ]\n [ 1.4866858 0.536246 -0.42648542]\n [-1.6625079 -0.5925798 -0.90080094]]", "observation": "[[ 0.4322815 0.03488725 0.5471343 0.00222629 0.00397046 -0.00327295]\n [ 0.4322815 0.03488725 0.5471343 0.00222629 0.00397046 -0.00327295]\n [ 0.4322815 0.03488725 0.5471343 0.00222629 0.00397046 -0.00327295]\n [ 0.4322815 0.03488725 0.5471343 0.00222629 0.00397046 -0.00327295]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8Bu9PJT8EL5QbXg+On8Qvh1Y8D1VV4M+6hCGvX762D3ihhM+JBuIvWHzBL5pHCg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02308461 -0.14158851 0.2426045 ]\n [-0.14111033 0.11735556 0.25652567]\n [-0.06546195 0.10594653 0.14406922]\n [-0.06645802 -0.12983467 0.04104272]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkGXBxB9lAMCUhpRSlIwBbJRLMowBdJRHQJlPthsqJ/J1fZQoaAZoCWgPQwhBSuza3u4AwJSGlFKUaBVLMmgWR0CZTzk2P1cudX2UKGgGaAloD0MIEvqZet2CA8CUhpRSlGgVSzJoFkdAmU67pJPIn3V9lChoBmgJaA9DCHGPpQ9d0APAlIaUUpRoFUsyaBZHQJlONO2y9mJ1fZQoaAZoCWgPQwgxem6hKzETwJSGlFKUaBVLMmgWR0CZU7BTGYKIdX2UKGgGaAloD0MIy52ZYDiHHMCUhpRSlGgVSzJoFkdAmVMztgKF7HV9lChoBmgJaA9DCONuEK0VDQPAlIaUUpRoFUsyaBZHQJlStu3trsV1fZQoaAZoCWgPQwiTOZZ31cMIwJSGlFKUaBVLMmgWR0CZUjGLUCq7dX2UKGgGaAloD0MIsWoQ5nZv9r+UhpRSlGgVSzJoFkdAmVfXHWBjF3V9lChoBmgJaA9DCBxfe2ZJIALAlIaUUpRoFUsyaBZHQJlXWon8baR1fZQoaAZoCWgPQwhgBfhu8+YAwJSGlFKUaBVLMmgWR0CZVuAYYR/WdX2UKGgGaAloD0MIfcucLovJ9L+UhpRSlGgVSzJoFkdAmVZZlnRLK3V9lChoBmgJaA9DCFw8vOfAcuu/lIaUUpRoFUsyaBZHQJlb+kbgjyF1fZQoaAZoCWgPQwhKmj+mtWkdwJSGlFKUaBVLMmgWR0CZW33Dej20dX2UKGgGaAloD0MI1QRR9wEoCMCUhpRSlGgVSzJoFkdAmVr//7zkIXV9lChoBmgJaA9DCMcpOpLL//S/lIaUUpRoFUsyaBZHQJlaeXJHRTl1fZQoaAZoCWgPQwjs2t5uSU4LwJSGlFKUaBVLMmgWR0CZXvXu3MINdX2UKGgGaAloD0MIOL72zJLA/b+UhpRSlGgVSzJoFkdAmV53SjQAuXV9lChoBmgJaA9DCNo391ePO/u/lIaUUpRoFUsyaBZHQJld96t1ZDB1fZQoaAZoCWgPQwiK5gEs8ssJwJSGlFKUaBVLMmgWR0CZXW+jua4MdX2UKGgGaAloD0MIrfpcbcX+B8CUhpRSlGgVSzJoFkdAmWFhD9fkWHV9lChoBmgJaA9DCO/Jw0KtKR3AlIaUUpRoFUsyaBZHQJlg4qpcX3x1fZQoaAZoCWgPQwiu00hL5S35v5SGlFKUaBVLMmgWR0CZYGLKmsNldX2UKGgGaAloD0MIqdpugm8aCMCUhpRSlGgVSzJoFkdAmV/aT0QK8nV9lChoBmgJaA9DCPzjvWplUhPAlIaUUpRoFUsyaBZHQJljwmUnogV1fZQoaAZoCWgPQwjNkgA1tRQgwJSGlFKUaBVLMmgWR0CZY0O3lS0jdX2UKGgGaAloD0MIhA1Pr5TVEcCUhpRSlGgVSzJoFkdAmWLEGzKLbnV9lChoBmgJaA9DCKlKW1zjcwXAlIaUUpRoFUsyaBZHQJliO8Zk0791fZQoaAZoCWgPQwhFLGLYYcz+v5SGlFKUaBVLMmgWR0CZZhubqhUSdX2UKGgGaAloD0MI4ICWrmDLEcCUhpRSlGgVSzJoFkdAmWWc7ZFoc3V9lChoBmgJaA9DCA6IEFfOXu+/lIaUUpRoFUsyaBZHQJllHLowEhd1fZQoaAZoCWgPQwgDzefc7RoDwJSGlFKUaBVLMmgWR0CZZJPyCnP3dX2UKGgGaAloD0MIRkQxeQNMCMCUhpRSlGgVSzJoFkdAmWhjgIhQnHV9lChoBmgJaA9DCOtWz0nvyxXAlIaUUpRoFUsyaBZHQJln5Nucc2l1fZQoaAZoCWgPQwhuUtFY+zsNwJSGlFKUaBVLMmgWR0CZZ2U1yeZodX2UKGgGaAloD0MIEyf3OxRVEsCUhpRSlGgVSzJoFkdAmWbcfNiYs3V9lChoBmgJaA9DCPj+Bu3VhxTAlIaUUpRoFUsyaBZHQJlqpHAh0Qt1fZQoaAZoCWgPQwjdQlciUH3yv5SGlFKUaBVLMmgWR0CZaiWMju8cdX2UKGgGaAloD0MIgQabOo/qAMCUhpRSlGgVSzJoFkdAmWmlZPl+3HV9lChoBmgJaA9DCCl7SzlfTAPAlIaUUpRoFUsyaBZHQJlpHR3NcGF1fZQoaAZoCWgPQwgvGcdI9kgdwJSGlFKUaBVLMmgWR0CZbQNEw35vdX2UKGgGaAloD0MIA0TBjCkY97+UhpRSlGgVSzJoFkdAmWyEaESM+HV9lChoBmgJaA9DCPAw7Zv76wbAlIaUUpRoFUsyaBZHQJlsBPxhDw91fZQoaAZoCWgPQwj9EvHW+bcAwJSGlFKUaBVLMmgWR0CZa3xG2CumdX2UKGgGaAloD0MIvJUlOssMHMCUhpRSlGgVSzJoFkdAmW9AnhKlHnV9lChoBmgJaA9DCOscA7LXOwnAlIaUUpRoFUsyaBZHQJluwaZQYUF1fZQoaAZoCWgPQwhn8WJhiBz8v5SGlFKUaBVLMmgWR0CZbkG0eEIxdX2UKGgGaAloD0MIjpWYZyVND8CUhpRSlGgVSzJoFkdAmW24eYD1XnV9lChoBmgJaA9DCL8qFyr/WgTAlIaUUpRoFUsyaBZHQJlxhEa2nbZ1fZQoaAZoCWgPQwgwuycPCxUZwJSGlFKUaBVLMmgWR0CZcQU+s5n2dX2UKGgGaAloD0MIOpUMAFX8CsCUhpRSlGgVSzJoFkdAmXCFJg9eQnV9lChoBmgJaA9DCBWqm4u/7fS/lIaUUpRoFUsyaBZHQJlv/Gm1pkB1fZQoaAZoCWgPQwhVouwt5TwAwJSGlFKUaBVLMmgWR0CZc9c8kleGdX2UKGgGaAloD0MI0Xr4MlGUF8CUhpRSlGgVSzJoFkdAmXNYrnTy8XV9lChoBmgJaA9DCJ+Sc2IPrfu/lIaUUpRoFUsyaBZHQJly2QV9F4N1fZQoaAZoCWgPQwg0MPKyJoYRwJSGlFKUaBVLMmgWR0CZclCj1wo9dX2UKGgGaAloD0MI9Bd6xOipH8CUhpRSlGgVSzJoFkdAmXYd65XlsHV9lChoBmgJaA9DCAjovpzZTgnAlIaUUpRoFUsyaBZHQJl1nuKGcnV1fZQoaAZoCWgPQwgnh086kQABwJSGlFKUaBVLMmgWR0CZdR7N0NjLdX2UKGgGaAloD0MIJ4QOuoTDEMCUhpRSlGgVSzJoFkdAmXSWSZBsynV9lChoBmgJaA9DCJgYy/RLBPS/lIaUUpRoFUsyaBZHQJl4dqrR0EJ1fZQoaAZoCWgPQwhm2CjrN9MBwJSGlFKUaBVLMmgWR0CZd/gLJCBxdX2UKGgGaAloD0MIQDTz5JpC/7+UhpRSlGgVSzJoFkdAmXd4Ju2qk3V9lChoBmgJaA9DCCMWMewwJv2/lIaUUpRoFUsyaBZHQJl274EfT1F1fZQoaAZoCWgPQwh7vJAOD+H4v5SGlFKUaBVLMmgWR0CZer6tknTidX2UKGgGaAloD0MIHccPlUaMCMCUhpRSlGgVSzJoFkdAmXo/+S8rZ3V9lChoBmgJaA9DCI1hTtAmhwjAlIaUUpRoFUsyaBZHQJl5wE3bVSZ1fZQoaAZoCWgPQwiwql5+p8n3v5SGlFKUaBVLMmgWR0CZeTe9Ba9sdX2UKGgGaAloD0MImGiQgqeQFcCUhpRSlGgVSzJoFkdAmX0IdELH/HV9lChoBmgJaA9DCMNmgAuyRQrAlIaUUpRoFUsyaBZHQJl8iYu01Il1fZQoaAZoCWgPQwhB9KRMaggTwJSGlFKUaBVLMmgWR0CZfAn3ta6jdX2UKGgGaAloD0MIDYy8rIlFAsCUhpRSlGgVSzJoFkdAmXuB9Tgl4XV9lChoBmgJaA9DCHnNqzqrpQzAlIaUUpRoFUsyaBZHQJl/PndO6/Z1fZQoaAZoCWgPQwgZO+ElOMUTwJSGlFKUaBVLMmgWR0CZfr/WDpTudX2UKGgGaAloD0MIsyWrItwUEcCUhpRSlGgVSzJoFkdAmX4/yGzrvHV9lChoBmgJaA9DCBfZzvdTIwXAlIaUUpRoFUsyaBZHQJl9t4X40uV1fZQoaAZoCWgPQwgt7j8yHToCwJSGlFKUaBVLMmgWR0CZgYpSJj2BdX2UKGgGaAloD0MImu0KfbBcGMCUhpRSlGgVSzJoFkdAmYELiIcin3V9lChoBmgJaA9DCLFSQUXVbwDAlIaUUpRoFUsyaBZHQJmAi7Bfrrx1fZQoaAZoCWgPQwg8akyIuaTyv5SGlFKUaBVLMmgWR0CZgAL4N7SidX2UKGgGaAloD0MIU8prJXTXDMCUhpRSlGgVSzJoFkdAmYO9+so2GnV9lChoBmgJaA9DCDLIXYQpygTAlIaUUpRoFUsyaBZHQJmDP27FsHl1fZQoaAZoCWgPQwjEJjJzgcsOwJSGlFKUaBVLMmgWR0CZgr+bmU4adX2UKGgGaAloD0MI7l2DvvQ2/L+UhpRSlGgVSzJoFkdAmYI3A6+36XV9lChoBmgJaA9DCOS/QBAgowDAlIaUUpRoFUsyaBZHQJmGW1XvH951fZQoaAZoCWgPQwjbFmU2yOQGwJSGlFKUaBVLMmgWR0CZhd5xiobXdX2UKGgGaAloD0MIhGQBE7j1/7+UhpRSlGgVSzJoFkdAmYVgiFCb+nV9lChoBmgJaA9DCFysqME0TPa/lIaUUpRoFUsyaBZHQJmE2UOd5IJ1fZQoaAZoCWgPQwgt6L0xBJAYwJSGlFKUaBVLMmgWR0CZih4mCyyEdX2UKGgGaAloD0MIYYvdPqsMAsCUhpRSlGgVSzJoFkdAmYmg9ic5KnV9lChoBmgJaA9DCJSkaybfDBHAlIaUUpRoFUsyaBZHQJmJI0bcXWR1fZQoaAZoCWgPQwhcdLLUej8BwJSGlFKUaBVLMmgWR0CZiJwFkhA4dX2UKGgGaAloD0MI9IdmnlwTFMCUhpRSlGgVSzJoFkdAmY36yGBWgnV9lChoBmgJaA9DCPRuLCgMagDAlIaUUpRoFUsyaBZHQJmNfjPv8ZV1fZQoaAZoCWgPQwiZm29E96wKwJSGlFKUaBVLMmgWR0CZjQCkoF3ZdX2UKGgGaAloD0MI1A0UeCdfCcCUhpRSlGgVSzJoFkdAmYx6g7HQyHV9lChoBmgJaA9DCLHc0mpIHPy/lIaUUpRoFUsyaBZHQJmSPHbRF7V1fZQoaAZoCWgPQwgwgsZMov4FwJSGlFKUaBVLMmgWR0CZkb/RVp9JdX2UKGgGaAloD0MI9uy5TE0CC8CUhpRSlGgVSzJoFkdAmZFCKaXrt3V9lChoBmgJaA9DCOLLRBFSN/e/lIaUUpRoFUsyaBZHQJmQu4ZuQ6p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (288 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.6796583434566856, "std_reward": 2.2768815401546947, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T20:56:29.602533"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b6bf2af2e5d5ffa5e25fd2b931b5427d247e0a4b32fc1e5dd26c96b5b8ee5c5
3
+ size 3056