Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +10 -10
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -2.
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.60 +/- 0.70
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0818c46c036d6c9ba49df0353c83880e0611e6be278bf5fc15775288ea45a036
|
3 |
+
size 108136
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -46,7 +46,7 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[ 0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,7 +77,7 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f89d50a2ca0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f89d50a4140>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1679018026769350430,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2M3kPhmcqjn+ah4/2M3kPhmcqjn+ah4/2M3kPhmcqjn+ah4/2M3kPhmcqjn+ah4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMutZv0q6Lz/4cBY/Y3R9P1LMgz9iEOY9rlaiPtG4A79GVz8/XguoP+mliL9Nk64/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADYzeQ+GZyqOf5qHj/mYwA8zOOFu12RxzvYzeQ+GZyqOf5qHj/mYwA8zOOFu12RxzvYzeQ+GZyqOf5qHj/mYwA8zOOFu12RxzvYzeQ+GZyqOf5qHj/mYwA8zOOFu12RxzuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[4.4688296e-01 3.2541229e-04 6.1882007e-01]\n [4.4688296e-01 3.2541229e-04 6.1882007e-01]\n [4.4688296e-01 3.2541229e-04 6.1882007e-01]\n [4.4688296e-01 3.2541229e-04 6.1882007e-01]]",
|
60 |
+
"desired_goal": "[[-0.85124505 0.6864363 0.58766127]\n [ 0.9900572 1.0296729 0.11233594]\n [ 0.31706756 -0.5145388 0.74742544]\n [ 1.3128469 -1.0675632 1.3638703 ]]",
|
61 |
+
"observation": "[[ 4.4688296e-01 3.2541229e-04 6.1882007e-01 7.8363176e-03\n -4.0859934e-03 6.0903267e-03]\n [ 4.4688296e-01 3.2541229e-04 6.1882007e-01 7.8363176e-03\n -4.0859934e-03 6.0903267e-03]\n [ 4.4688296e-01 3.2541229e-04 6.1882007e-01 7.8363176e-03\n -4.0859934e-03 6.0903267e-03]\n [ 4.4688296e-01 3.2541229e-04 6.1882007e-01 7.8363176e-03\n -4.0859934e-03 6.0903267e-03]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAi7KhPXFpqz0Wrm4+h9DZOzjEbr2SA1I+E/2XvZn+jrwDyhs96o2Fvc3s9D3otbI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.07895382 0.08369721 0.23308596]\n [ 0.00664717 -0.0582926 0.20509174]\n [-0.07421317 -0.01745539 0.03803445]\n [-0.06521209 0.11959229 0.08726102]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0V0SZ0UU+7+UhpRSlIwBbJRLMowBdJRHQKnQIEQoTf11fZQoaAZoCWgPQwhjgEQTKOL7v5SGlFKUaBVLMmgWR0Cpz8jQRf4RdX2UKGgGaAloD0MIfLlPjgJEA8CUhpRSlGgVSzJoFkdAqc9xyIYWL3V9lChoBmgJaA9DCLCsNCkFXeq/lIaUUpRoFUsyaBZHQKnPGnKGL1p1fZQoaAZoCWgPQwgD7Q4pBsgMwJSGlFKUaBVLMmgWR0Cp0ZZNoJzDdX2UKGgGaAloD0MIhLndy31yB8CUhpRSlGgVSzJoFkdAqdE+1IAfdXV9lChoBmgJaA9DCDjXMEPjCfe/lIaUUpRoFUsyaBZHQKnQ6Kw6hg51fZQoaAZoCWgPQwhVbTfBNy0EwJSGlFKUaBVLMmgWR0Cp0JFrl/6PdX2UKGgGaAloD0MIm1Wfq63Y7L+UhpRSlGgVSzJoFkdAqdLWpGWldnV9lChoBmgJaA9DCFd8Q+Gzdfi/lIaUUpRoFUsyaBZHQKnSfyauwHJ1fZQoaAZoCWgPQwjOGyeFeY/0v5SGlFKUaBVLMmgWR0Cp0ii2c8T0dX2UKGgGaAloD0MIA5ZcxeJ38r+UhpRSlGgVSzJoFkdAqdHRT6zmfXV9lChoBmgJaA9DCMCSq1j8xgbAlIaUUpRoFUsyaBZHQKnUFpBX0Xh1fZQoaAZoCWgPQwhW9fI7TUYCwJSGlFKUaBVLMmgWR0Cp078nE2pAdX2UKGgGaAloD0MIVS+/02SG9L+UhpRSlGgVSzJoFkdAqdNoG+sYEXV9lChoBmgJaA9DCONtpddmI/u/lIaUUpRoFUsyaBZHQKnTEOuq3mV1fZQoaAZoCWgPQwjQKcjPRu4EwJSGlFKUaBVLMmgWR0Cp1UtYB/7SdX2UKGgGaAloD0MIy7p/LEQnB8CUhpRSlGgVSzJoFkdAqdTz4nF5wHV9lChoBmgJaA9DCNdR1QRRNwHAlIaUUpRoFUsyaBZHQKnUnMewLVp1fZQoaAZoCWgPQwjI68Gk+Dj+v5SGlFKUaBVLMmgWR0Cp1EWSU1Q7dX2UKGgGaAloD0MIPfAxWHEq8L+UhpRSlGgVSzJoFkdAqdaP+l0o0HV9lChoBmgJaA9DCAxXB0DcVQfAlIaUUpRoFUsyaBZHQKnWOHcDbJx1fZQoaAZoCWgPQwgYPiKmRFL2v5SGlFKUaBVLMmgWR0Cp1eFH8TBZdX2UKGgGaAloD0MIipC6nX1l87+UhpRSlGgVSzJoFkdAqdWJ4W1twnV9lChoBmgJaA9DCOXRjbCoyPC/lIaUUpRoFUsyaBZHQKnXy8QI2O11fZQoaAZoCWgPQwiiXvBpTt4FwJSGlFKUaBVLMmgWR0Cp13QtapxWdX2UKGgGaAloD0MIisqGNZUFCcCUhpRSlGgVSzJoFkdAqdcdE5Qxe3V9lChoBmgJaA9DCDB/hcyVAQHAlIaUUpRoFUsyaBZHQKnWxdAPd2x1fZQoaAZoCWgPQwieKAmJtE32v5SGlFKUaBVLMmgWR0Cp2Sh9Tgl4dX2UKGgGaAloD0MI/cBVnkA4CcCUhpRSlGgVSzJoFkdAqdjQ2Kl54XV9lChoBmgJaA9DCNXL7zSZMfW/lIaUUpRoFUsyaBZHQKnYebpeNT91fZQoaAZoCWgPQwiALa9cbxvxv5SGlFKUaBVLMmgWR0Cp2CJ0GNaRdX2UKGgGaAloD0MIFRxeEJFaA8CUhpRSlGgVSzJoFkdAqdpnHmzSkXV9lChoBmgJaA9DCLiSHRuBOPS/lIaUUpRoFUsyaBZHQKnaEAmzByl1fZQoaAZoCWgPQwjzHJHvUur+v5SGlFKUaBVLMmgWR0Cp2bkHD766dX2UKGgGaAloD0MIHVVNEHUfAMCUhpRSlGgVSzJoFkdAqdlh2ZAprnV9lChoBmgJaA9DCK6CGOjaV/2/lIaUUpRoFUsyaBZHQKncKHiWE9N1fZQoaAZoCWgPQwibAS7IlqUHwJSGlFKUaBVLMmgWR0Cp29D7hvR7dX2UKGgGaAloD0MI73A7NCxGA8CUhpRSlGgVSzJoFkdAqdt60OVgQnV9lChoBmgJaA9DCDc10HzOnfu/lIaUUpRoFUsyaBZHQKnbJHBDXvp1fZQoaAZoCWgPQwhINlfNc0Tuv5SGlFKUaBVLMmgWR0Cp3dNwJgLJdX2UKGgGaAloD0MInIwqw7ibB8CUhpRSlGgVSzJoFkdAqd185OrQxHV9lChoBmgJaA9DCIBIv30dmAPAlIaUUpRoFUsyaBZHQKndJrNW2gF1fZQoaAZoCWgPQwjg10gShOv8v5SGlFKUaBVLMmgWR0Cp3NG1IAfddX2UKGgGaAloD0MIfA4sR8hA/7+UhpRSlGgVSzJoFkdAqeArVH4GlnV9lChoBmgJaA9DCA2reCPzKATAlIaUUpRoFUsyaBZHQKnf1PtUn5V1fZQoaAZoCWgPQwhlNsgkI2fxv5SGlFKUaBVLMmgWR0Cp34Ccf/3ndX2UKGgGaAloD0MIF9aNd0cmA8CUhpRSlGgVSzJoFkdAqd8qpiqhlHV9lChoBmgJaA9DCMzSTs3lhgDAlIaUUpRoFUsyaBZHQKniF4i5d4V1fZQoaAZoCWgPQwhyF2GKcin1v5SGlFKUaBVLMmgWR0Cp4cEYO2AodX2UKGgGaAloD0MIW0QUkzegBcCUhpRSlGgVSzJoFkdAqeFqi9IwunV9lChoBmgJaA9DCFDkSdI1k/W/lIaUUpRoFUsyaBZHQKnhFSaVlf91fZQoaAZoCWgPQwg7iQj/IkgEwJSGlFKUaBVLMmgWR0Cp5EQob4rSdX2UKGgGaAloD0MI3IDPDyMEAsCUhpRSlGgVSzJoFkdAqePuKoAGS3V9lChoBmgJaA9DCLCRJAhXAPe/lIaUUpRoFUsyaBZHQKnjmBgeA/d1fZQoaAZoCWgPQwhk5ZfBGDEHwJSGlFKUaBVLMmgWR0Cp40H/tICmdX2UKGgGaAloD0MI1PAtrBtv9b+UhpRSlGgVSzJoFkdAqeZnT3IuG3V9lChoBmgJaA9DCNF4Iojz8PC/lIaUUpRoFUsyaBZHQKnmEPNmlIp1fZQoaAZoCWgPQwgSTDWzloL9v5SGlFKUaBVLMmgWR0Cp5bsAFPi2dX2UKGgGaAloD0MIQ8ajVMKT+b+UhpRSlGgVSzJoFkdAqeVk7hegMHV9lChoBmgJaA9DCO1FtB1T9wXAlIaUUpRoFUsyaBZHQKnoaUxmCiB1fZQoaAZoCWgPQwit9xvtuCH2v5SGlFKUaBVLMmgWR0Cp6BLW7OE/dX2UKGgGaAloD0MIAvBPqRLl7r+UhpRSlGgVSzJoFkdAqee8d92HL3V9lChoBmgJaA9DCJXUCWgirP6/lIaUUpRoFUsyaBZHQKnnZb/Ot4l1fZQoaAZoCWgPQwhRTN4AM1/8v5SGlFKUaBVLMmgWR0Cp6aiVB2OidX2UKGgGaAloD0MI1As+zcnrBMCUhpRSlGgVSzJoFkdAqelQ3m3fAXV9lChoBmgJaA9DCInt7gG6Lw7AlIaUUpRoFUsyaBZHQKno+cEvCdl1fZQoaAZoCWgPQwga+bziqScDwJSGlFKUaBVLMmgWR0Cp6KJzT4L1dX2UKGgGaAloD0MIkQ4PYfxUAMCUhpRSlGgVSzJoFkdAqerNwcYIjXV9lChoBmgJaA9DCPT91HjpJvy/lIaUUpRoFUsyaBZHQKnqdmITGo91fZQoaAZoCWgPQwjarPpcbUXyv5SGlFKUaBVLMmgWR0Cp6h87p3X7dX2UKGgGaAloD0MInkXvVMD9CsCUhpRSlGgVSzJoFkdAqenHqs2ehHV9lChoBmgJaA9DCP96hQX3A+O/lIaUUpRoFUsyaBZHQKnr8xPfsNV1fZQoaAZoCWgPQwj7yRgfZu/4v5SGlFKUaBVLMmgWR0Cp65t5dGAkdX2UKGgGaAloD0MIrDqrBfbY87+UhpRSlGgVSzJoFkdAqetEPczqKXV9lChoBmgJaA9DCNfdPNUhVwnAlIaUUpRoFUsyaBZHQKnq7MEidJ91fZQoaAZoCWgPQwgNObaeIXwCwJSGlFKUaBVLMmgWR0Cp7UiHZbpvdX2UKGgGaAloD0MIle8ZidBYEMCUhpRSlGgVSzJoFkdAqezxC6YmcHV9lChoBmgJaA9DCAPuef60MQrAlIaUUpRoFUsyaBZHQKnsmfEGZ/l1fZQoaAZoCWgPQwgydOygEpf9v5SGlFKUaBVLMmgWR0Cp7EOEM9bHdX2UKGgGaAloD0MIfzFbsipC8r+UhpRSlGgVSzJoFkdAqe6gAsCkoHV9lChoBmgJaA9DCFN40Oy6d/i/lIaUUpRoFUsyaBZHQKnuSXtShrZ1fZQoaAZoCWgPQwjECOHRxnEAwJSGlFKUaBVLMmgWR0Cp7fJ7kXDWdX2UKGgGaAloD0MIGvm84qkHAsCUhpRSlGgVSzJoFkdAqe2bUwztTnV9lChoBmgJaA9DCGL2su20tfW/lIaUUpRoFUsyaBZHQKnv2OhCdBl1fZQoaAZoCWgPQwh72XbaGvEGwJSGlFKUaBVLMmgWR0Cp74FlTWGzdX2UKGgGaAloD0MIFW9kHvnDAcCUhpRSlGgVSzJoFkdAqe8qV4X403V9lChoBmgJaA9DCGoTJ/c7VPe/lIaUUpRoFUsyaBZHQKnu0w+MZP51fZQoaAZoCWgPQwiwH2KDhXMLwJSGlFKUaBVLMmgWR0Cp8PdDhLoPdX2UKGgGaAloD0MI8xsmGqTg+r+UhpRSlGgVSzJoFkdAqfCfnW8RMHV9lChoBmgJaA9DCDwUBfpEvgjAlIaUUpRoFUsyaBZHQKnwSIX0oSd1fZQoaAZoCWgPQwh41JgQc0kDwJSGlFKUaBVLMmgWR0Cp7/EZ75VPdX2UKGgGaAloD0MIm/7sR4oIB8CUhpRSlGgVSzJoFkdAqfIJl6JIlXV9lChoBmgJaA9DCO1+FeC7LQbAlIaUUpRoFUsyaBZHQKnxsp6QeV91fZQoaAZoCWgPQwg8aHbdW/EBwJSGlFKUaBVLMmgWR0Cp8VwGfPHDdX2UKGgGaAloD0MIppwv9l58A8CUhpRSlGgVSzJoFkdAqfEEsFt8/nV9lChoBmgJaA9DCLK5ap4jcu+/lIaUUpRoFUsyaBZHQKnzPGBnSOR1fZQoaAZoCWgPQwjerpemCBAOwJSGlFKUaBVLMmgWR0Cp8uS2QXANdX2UKGgGaAloD0MIJnLBGfxdD8CUhpRSlGgVSzJoFkdAqfKNVaOghHV9lChoBmgJaA9DCFvptdlYSQDAlIaUUpRoFUsyaBZHQKnyNiDM/yJ1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c066dc21a2303418c075efd5ad2c0e65e088112e5e54160326bb48f0b95216c7
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e249cf8a0215e0e9c3bd617cc4cd5de780673d8693a21fe966529d577cfb5d49
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2161485820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2161487940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678483793752445206, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6Mi6PvX9oLzuVCw/6Mi6PvX9oLzuVCw/6Mi6PvX9oLzuVCw/6Mi6PvX9oLzuVCw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhFPWPb0jpb8PFH29LwHWv0Q/Fr+q6a0/ec9DP2k/dT5fN4e/UkTSv5crz76rYr0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADoyLo+9f2gvO5ULD+H/Ha7r2RDu111gTzoyLo+9f2gvO5ULD+H/Ha7r2RDu111gTzoyLo+9f2gvO5ULD+H/Ha7r2RDu111gTzoyLo+9f2gvO5ULD+H/Ha7r2RDu111gTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.36481404 -0.01965235 0.6731709 ]\n [ 0.36481404 -0.01965235 0.6731709 ]\n [ 0.36481404 -0.01965235 0.6731709 ]\n [ 0.36481404 -0.01965235 0.6731709 ]]", "desired_goal": "[[ 0.10465148 -1.2901531 -0.06178671]\n [-1.6719111 -0.58690286 1.3586934 ]\n [ 0.76488453 0.2394997 -1.0563773 ]\n [-1.64271 -0.40462944 1.4795736 ]]", "observation": "[[ 0.36481404 -0.01965235 0.6731709 -0.00376871 -0.00298147 0.01580303]\n [ 0.36481404 -0.01965235 0.6731709 -0.00376871 -0.00298147 0.01580303]\n [ 0.36481404 -0.01965235 0.6731709 -0.00376871 -0.00298147 0.01580303]\n [ 0.36481404 -0.01965235 0.6731709 -0.00376871 -0.00298147 0.01580303]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAicKPuISw7yn9og6RMrTvZeC973MHXY84jxnuphyx7yh+HM+LRttvV8xGT7O9Y0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13491443 -0.02381271 0.00104495]\n [-0.10341313 -0.12085455 0.01502175]\n [-0.0008821 -0.02434663 0.23825313]\n [-0.05788724 0.1496024 0.27726597]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPSr+74jKDcCUhpRSlIwBbJRLMowBdJRHQKkw1n8Kohp1fZQoaAZoCWgPQwhIF5tWCuEBwJSGlFKUaBVLMmgWR0CpMA56MR6GdX2UKGgGaAloD0MI7Z+nAYOECMCUhpRSlGgVSzJoFkdAqS9inHeaa3V9lChoBmgJaA9DCJBKsaNxqPy/lIaUUpRoFUsyaBZHQKkuaUs4DLd1fZQoaAZoCWgPQwiTOCuiJhoZwJSGlFKUaBVLMmgWR0CpMg8VQAMldX2UKGgGaAloD0MImDRG66iKE8CUhpRSlGgVSzJoFkdAqTFHTCtRvXV9lChoBmgJaA9DCGafxyjP3BLAlIaUUpRoFUsyaBZHQKkwm6f8Mux1fZQoaAZoCWgPQwgTtwpioEsLwJSGlFKUaBVLMmgWR0CpL6I4+8oQdX2UKGgGaAloD0MIsRh1rb2P/b+UhpRSlGgVSzJoFkdAqTM4jnmq53V9lChoBmgJaA9DCBvZlZaRuv+/lIaUUpRoFUsyaBZHQKkycLmZE2J1fZQoaAZoCWgPQwhse7slOcANwJSGlFKUaBVLMmgWR0CpMcTakAPvdX2UKGgGaAloD0MIkIR9O4lID8CUhpRSlGgVSzJoFkdAqTDL6P8ye3V9lChoBmgJaA9DCLQB2IAIERLAlIaUUpRoFUsyaBZHQKk0UGzru6V1fZQoaAZoCWgPQwgoYhHDDnMQwJSGlFKUaBVLMmgWR0CpM4ibUgB+dX2UKGgGaAloD0MIaeId4EnLAMCUhpRSlGgVSzJoFkdAqTLcmY0EYHV9lChoBmgJaA9DCBJosKnz6A3AlIaUUpRoFUsyaBZHQKkx43R5TqB1fZQoaAZoCWgPQwgBh1ClZo/+v5SGlFKUaBVLMmgWR0CpNcWn0kGBdX2UKGgGaAloD0MIq3mOyHfJBsCUhpRSlGgVSzJoFkdAqTT+hGpdbHV9lChoBmgJaA9DCEeQSrGjMQ/AlIaUUpRoFUsyaBZHQKk0U54nndR1fZQoaAZoCWgPQwgplIWvr9UDwJSGlFKUaBVLMmgWR0CpM1sHB1s+dX2UKGgGaAloD0MIKCuGqwNgC8CUhpRSlGgVSzJoFkdAqTdpkGzKLnV9lChoBmgJaA9DCJJaKJmcegnAlIaUUpRoFUsyaBZHQKk2ohbGFSN1fZQoaAZoCWgPQwgZWTLH8r4UwJSGlFKUaBVLMmgWR0CpNfa6jFhodX2UKGgGaAloD0MIweRGkbVG+7+UhpRSlGgVSzJoFkdAqTT+GsV+JHV9lChoBmgJaA9DCC7JAbua3BfAlIaUUpRoFUsyaBZHQKk5NXyRSxZ1fZQoaAZoCWgPQwjHf4EgQMYBwJSGlFKUaBVLMmgWR0CpOG48EFGHdX2UKGgGaAloD0MI+WpHcY5aEMCUhpRSlGgVSzJoFkdAqTfDDjzZpXV9lChoBmgJaA9DCBEAHHv2jBbAlIaUUpRoFUsyaBZHQKk2ymNR3vB1fZQoaAZoCWgPQwi95erHJvkAwJSGlFKUaBVLMmgWR0CpOt2UKRdQdX2UKGgGaAloD0MIKqc9JedkAMCUhpRSlGgVSzJoFkdAqToWXRgJC3V9lChoBmgJaA9DCJnZ5zHKgxHAlIaUUpRoFUsyaBZHQKk5ay0KJEZ1fZQoaAZoCWgPQwiMoDGTqHcFwJSGlFKUaBVLMmgWR0CpOHJ8OTaCdX2UKGgGaAloD0MIlGjJ42kZCsCUhpRSlGgVSzJoFkdAqTyN32VVxXV9lChoBmgJaA9DCPBpTl5kwgbAlIaUUpRoFUsyaBZHQKk7xun/DLt1fZQoaAZoCWgPQwgM5US7Cun/v5SGlFKUaBVLMmgWR0CpOxwla8pTdX2UKGgGaAloD0MIFJUNayrrEsCUhpRSlGgVSzJoFkdAqTokKRdQf3V9lChoBmgJaA9DCGtFm+PcpgzAlIaUUpRoFUsyaBZHQKk+ailBQep1fZQoaAZoCWgPQwjImLuWkL8bwJSGlFKUaBVLMmgWR0CpPaL4etCBdX2UKGgGaAloD0MIoDaq04FMDsCUhpRSlGgVSzJoFkdAqTz4FV1fV3V9lChoBmgJaA9DCIrmASzyiwLAlIaUUpRoFUsyaBZHQKk8ACVbA1x1fZQoaAZoCWgPQwiEg72JIVkQwJSGlFKUaBVLMmgWR0CpQCxu89OidX2UKGgGaAloD0MIVOOlm8SgCsCUhpRSlGgVSzJoFkdAqT9lbLU1AXV9lChoBmgJaA9DCOyEl+DUBwLAlIaUUpRoFUsyaBZHQKk+uliz9jx1fZQoaAZoCWgPQwjEeM2rOqsTwJSGlFKUaBVLMmgWR0CpPcHIhhYvdX2UKGgGaAloD0MIMq1NY3ttAMCUhpRSlGgVSzJoFkdAqUFYqoZQ53V9lChoBmgJaA9DCCdMGM3K1hDAlIaUUpRoFUsyaBZHQKlAkLv1DjR1fZQoaAZoCWgPQwjRQZdw6A0BwJSGlFKUaBVLMmgWR0CpP+VtfoicdX2UKGgGaAloD0MI6IcRwqO9FsCUhpRSlGgVSzJoFkdAqT7s9SuQqHV9lChoBmgJaA9DCC5zuiwmtgHAlIaUUpRoFUsyaBZHQKlCUzkZJkJ1fZQoaAZoCWgPQwj4GKw41Vr7v5SGlFKUaBVLMmgWR0CpQYt9hJAddX2UKGgGaAloD0MIGapiKv1EA8CUhpRSlGgVSzJoFkdAqUDfpQk5ZXV9lChoBmgJaA9DCJZ2ai43eAjAlIaUUpRoFUsyaBZHQKk/5jT8YQ91fZQoaAZoCWgPQwgRNjy9UtYLwJSGlFKUaBVLMmgWR0CpQ0nFglWwdX2UKGgGaAloD0MI9iSwOQePAsCUhpRSlGgVSzJoFkdAqUKB3kgfVHV9lChoBmgJaA9DCCP3dHXHQgLAlIaUUpRoFUsyaBZHQKlB1dUKiPB1fZQoaAZoCWgPQwgaFTjZBg4KwJSGlFKUaBVLMmgWR0CpQNxf4REndX2UKGgGaAloD0MI8iVUcHiREcCUhpRSlGgVSzJoFkdAqURJMYdhiXV9lChoBmgJaA9DCGmLa3wm+wTAlIaUUpRoFUsyaBZHQKlDgY8+zMR1fZQoaAZoCWgPQwgW9x+ZDv0MwJSGlFKUaBVLMmgWR0CpQtW1D0DmdX2UKGgGaAloD0MIRN5y9WPzEsCUhpRSlGgVSzJoFkdAqUHcKqn3tnV9lChoBmgJaA9DCKvtJvimGRzAlIaUUpRoFUsyaBZHQKlFZ6JqIrR1fZQoaAZoCWgPQwhOC170FYQLwJSGlFKUaBVLMmgWR0CpRJ+0ojOcdX2UKGgGaAloD0MI+FPjpZuEAcCUhpRSlGgVSzJoFkdAqUPzyQPqcHV9lChoBmgJaA9DCKZetwiMlRLAlIaUUpRoFUsyaBZHQKlC+kv9LpR1fZQoaAZoCWgPQwiNz2T/PA0NwJSGlFKUaBVLMmgWR0CpRlzHCGeudX2UKGgGaAloD0MIzjl4JjQJCsCUhpRSlGgVSzJoFkdAqUWUv0yxiXV9lChoBmgJaA9DCJwaaD7nzg7AlIaUUpRoFUsyaBZHQKlE6OH31z11fZQoaAZoCWgPQwiAYfnzbYEWwJSGlFKUaBVLMmgWR0CpQ+/T9bX6dX2UKGgGaAloD0MID52ed2MBDcCUhpRSlGgVSzJoFkdAqUdUYsNDt3V9lChoBmgJaA9DCB2R71LqshDAlIaUUpRoFUsyaBZHQKlGjKB/Zuh1fZQoaAZoCWgPQwjeVnptNsYbwJSGlFKUaBVLMmgWR0CpReC5d4VzdX2UKGgGaAloD0MIYp8AipHlCcCUhpRSlGgVSzJoFkdAqUTnfO2RaHV9lChoBmgJaA9DCKzijcwjPxPAlIaUUpRoFUsyaBZHQKlIbGcWj451fZQoaAZoCWgPQwg4MSQnE3cMwJSGlFKUaBVLMmgWR0CpR6RWtEG8dX2UKGgGaAloD0MIelT83xHVCsCUhpRSlGgVSzJoFkdAqUb4blzU7XV9lChoBmgJaA9DCGu3XWiukxTAlIaUUpRoFUsyaBZHQKlF/vDxb0R1fZQoaAZoCWgPQwhSDmYTYDgUwJSGlFKUaBVLMmgWR0CpSWgYHgP3dX2UKGgGaAloD0MItOidCrgnA8CUhpRSlGgVSzJoFkdAqUigfKZDzHV9lChoBmgJaA9DCG4yqgzjTg3AlIaUUpRoFUsyaBZHQKlH9Gff4yp1fZQoaAZoCWgPQwiUh4Va09wHwJSGlFKUaBVLMmgWR0CpRvsV1wHadX2UKGgGaAloD0MIHhuBeF3/BsCUhpRSlGgVSzJoFkdAqUqLoW56MXV9lChoBmgJaA9DCH3p7c9FgwbAlIaUUpRoFUsyaBZHQKlJw+ajN6h1fZQoaAZoCWgPQwhPdcjNcEMDwJSGlFKUaBVLMmgWR0CpSRibMHKPdX2UKGgGaAloD0MIdm1vtyTHDMCUhpRSlGgVSzJoFkdAqUggd8zAOHV9lChoBmgJaA9DCKryPSMRWgPAlIaUUpRoFUsyaBZHQKlLjasZHd51fZQoaAZoCWgPQwjK/Q5FgX78v5SGlFKUaBVLMmgWR0CpSsXK8tf5dX2UKGgGaAloD0MIUb8LW7PVAsCUhpRSlGgVSzJoFkdAqUoae9SMtXV9lChoBmgJaA9DCJQzFHe8KQ/AlIaUUpRoFUsyaBZHQKlJIgyuZCx1fZQoaAZoCWgPQwhaK9oc52YcwJSGlFKUaBVLMmgWR0CpTKykj5bhdX2UKGgGaAloD0MI6YAk7NuJBsCUhpRSlGgVSzJoFkdAqUvk03wTd3V9lChoBmgJaA9DCOUpq+l6QgjAlIaUUpRoFUsyaBZHQKlLOQDmr811fZQoaAZoCWgPQwh41QPmIbMIwJSGlFKUaBVLMmgWR0CpSkAYgq3FdX2UKGgGaAloD0MIbtxifm5oAcCUhpRSlGgVSzJoFkdAqU2sN2C/XXV9lChoBmgJaA9DCP0VMlcGNQrAlIaUUpRoFUsyaBZHQKlM5FPznRt1fZQoaAZoCWgPQwgJxVbQtGQHwJSGlFKUaBVLMmgWR0CpTDhmGucMdX2UKGgGaAloD0MIoUj3cwqSBMCUhpRSlGgVSzJoFkdAqUs/HLida3V9lChoBmgJaA9DCBxeEJGa9hPAlIaUUpRoFUsyaBZHQKlO1Hp8neB1fZQoaAZoCWgPQwh/oUeMnhsFwJSGlFKUaBVLMmgWR0CpTgyDyvs7dX2UKGgGaAloD0MIxHsOLEe4EsCUhpRSlGgVSzJoFkdAqU1g5DJEIHV9lChoBmgJaA9DCHzUX6+wQAXAlIaUUpRoFUsyaBZHQKlMZ3W4EwF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f89d50a2ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f89d50a4140>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679018026769350430, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2M3kPhmcqjn+ah4/2M3kPhmcqjn+ah4/2M3kPhmcqjn+ah4/2M3kPhmcqjn+ah4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMutZv0q6Lz/4cBY/Y3R9P1LMgz9iEOY9rlaiPtG4A79GVz8/XguoP+mliL9Nk64/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADYzeQ+GZyqOf5qHj/mYwA8zOOFu12RxzvYzeQ+GZyqOf5qHj/mYwA8zOOFu12RxzvYzeQ+GZyqOf5qHj/mYwA8zOOFu12RxzvYzeQ+GZyqOf5qHj/mYwA8zOOFu12RxzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[4.4688296e-01 3.2541229e-04 6.1882007e-01]\n [4.4688296e-01 3.2541229e-04 6.1882007e-01]\n [4.4688296e-01 3.2541229e-04 6.1882007e-01]\n [4.4688296e-01 3.2541229e-04 6.1882007e-01]]", "desired_goal": "[[-0.85124505 0.6864363 0.58766127]\n [ 0.9900572 1.0296729 0.11233594]\n [ 0.31706756 -0.5145388 0.74742544]\n [ 1.3128469 -1.0675632 1.3638703 ]]", "observation": "[[ 4.4688296e-01 3.2541229e-04 6.1882007e-01 7.8363176e-03\n -4.0859934e-03 6.0903267e-03]\n [ 4.4688296e-01 3.2541229e-04 6.1882007e-01 7.8363176e-03\n -4.0859934e-03 6.0903267e-03]\n [ 4.4688296e-01 3.2541229e-04 6.1882007e-01 7.8363176e-03\n -4.0859934e-03 6.0903267e-03]\n [ 4.4688296e-01 3.2541229e-04 6.1882007e-01 7.8363176e-03\n -4.0859934e-03 6.0903267e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAi7KhPXFpqz0Wrm4+h9DZOzjEbr2SA1I+E/2XvZn+jrwDyhs96o2Fvc3s9D3otbI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07895382 0.08369721 0.23308596]\n [ 0.00664717 -0.0582926 0.20509174]\n [-0.07421317 -0.01745539 0.03803445]\n [-0.06521209 0.11959229 0.08726102]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0V0SZ0UU+7+UhpRSlIwBbJRLMowBdJRHQKnQIEQoTf11fZQoaAZoCWgPQwhjgEQTKOL7v5SGlFKUaBVLMmgWR0Cpz8jQRf4RdX2UKGgGaAloD0MIfLlPjgJEA8CUhpRSlGgVSzJoFkdAqc9xyIYWL3V9lChoBmgJaA9DCLCsNCkFXeq/lIaUUpRoFUsyaBZHQKnPGnKGL1p1fZQoaAZoCWgPQwgD7Q4pBsgMwJSGlFKUaBVLMmgWR0Cp0ZZNoJzDdX2UKGgGaAloD0MIhLndy31yB8CUhpRSlGgVSzJoFkdAqdE+1IAfdXV9lChoBmgJaA9DCDjXMEPjCfe/lIaUUpRoFUsyaBZHQKnQ6Kw6hg51fZQoaAZoCWgPQwhVbTfBNy0EwJSGlFKUaBVLMmgWR0Cp0JFrl/6PdX2UKGgGaAloD0MIm1Wfq63Y7L+UhpRSlGgVSzJoFkdAqdLWpGWldnV9lChoBmgJaA9DCFd8Q+Gzdfi/lIaUUpRoFUsyaBZHQKnSfyauwHJ1fZQoaAZoCWgPQwjOGyeFeY/0v5SGlFKUaBVLMmgWR0Cp0ii2c8T0dX2UKGgGaAloD0MIA5ZcxeJ38r+UhpRSlGgVSzJoFkdAqdHRT6zmfXV9lChoBmgJaA9DCMCSq1j8xgbAlIaUUpRoFUsyaBZHQKnUFpBX0Xh1fZQoaAZoCWgPQwhW9fI7TUYCwJSGlFKUaBVLMmgWR0Cp078nE2pAdX2UKGgGaAloD0MIVS+/02SG9L+UhpRSlGgVSzJoFkdAqdNoG+sYEXV9lChoBmgJaA9DCONtpddmI/u/lIaUUpRoFUsyaBZHQKnTEOuq3mV1fZQoaAZoCWgPQwjQKcjPRu4EwJSGlFKUaBVLMmgWR0Cp1UtYB/7SdX2UKGgGaAloD0MIy7p/LEQnB8CUhpRSlGgVSzJoFkdAqdTz4nF5wHV9lChoBmgJaA9DCNdR1QRRNwHAlIaUUpRoFUsyaBZHQKnUnMewLVp1fZQoaAZoCWgPQwjI68Gk+Dj+v5SGlFKUaBVLMmgWR0Cp1EWSU1Q7dX2UKGgGaAloD0MIPfAxWHEq8L+UhpRSlGgVSzJoFkdAqdaP+l0o0HV9lChoBmgJaA9DCAxXB0DcVQfAlIaUUpRoFUsyaBZHQKnWOHcDbJx1fZQoaAZoCWgPQwgYPiKmRFL2v5SGlFKUaBVLMmgWR0Cp1eFH8TBZdX2UKGgGaAloD0MIipC6nX1l87+UhpRSlGgVSzJoFkdAqdWJ4W1twnV9lChoBmgJaA9DCOXRjbCoyPC/lIaUUpRoFUsyaBZHQKnXy8QI2O11fZQoaAZoCWgPQwiiXvBpTt4FwJSGlFKUaBVLMmgWR0Cp13QtapxWdX2UKGgGaAloD0MIisqGNZUFCcCUhpRSlGgVSzJoFkdAqdcdE5Qxe3V9lChoBmgJaA9DCDB/hcyVAQHAlIaUUpRoFUsyaBZHQKnWxdAPd2x1fZQoaAZoCWgPQwieKAmJtE32v5SGlFKUaBVLMmgWR0Cp2Sh9Tgl4dX2UKGgGaAloD0MI/cBVnkA4CcCUhpRSlGgVSzJoFkdAqdjQ2Kl54XV9lChoBmgJaA9DCNXL7zSZMfW/lIaUUpRoFUsyaBZHQKnYebpeNT91fZQoaAZoCWgPQwiALa9cbxvxv5SGlFKUaBVLMmgWR0Cp2CJ0GNaRdX2UKGgGaAloD0MIFRxeEJFaA8CUhpRSlGgVSzJoFkdAqdpnHmzSkXV9lChoBmgJaA9DCLiSHRuBOPS/lIaUUpRoFUsyaBZHQKnaEAmzByl1fZQoaAZoCWgPQwjzHJHvUur+v5SGlFKUaBVLMmgWR0Cp2bkHD766dX2UKGgGaAloD0MIHVVNEHUfAMCUhpRSlGgVSzJoFkdAqdlh2ZAprnV9lChoBmgJaA9DCK6CGOjaV/2/lIaUUpRoFUsyaBZHQKncKHiWE9N1fZQoaAZoCWgPQwibAS7IlqUHwJSGlFKUaBVLMmgWR0Cp29D7hvR7dX2UKGgGaAloD0MI73A7NCxGA8CUhpRSlGgVSzJoFkdAqdt60OVgQnV9lChoBmgJaA9DCDc10HzOnfu/lIaUUpRoFUsyaBZHQKnbJHBDXvp1fZQoaAZoCWgPQwhINlfNc0Tuv5SGlFKUaBVLMmgWR0Cp3dNwJgLJdX2UKGgGaAloD0MInIwqw7ibB8CUhpRSlGgVSzJoFkdAqd185OrQxHV9lChoBmgJaA9DCIBIv30dmAPAlIaUUpRoFUsyaBZHQKndJrNW2gF1fZQoaAZoCWgPQwjg10gShOv8v5SGlFKUaBVLMmgWR0Cp3NG1IAfddX2UKGgGaAloD0MIfA4sR8hA/7+UhpRSlGgVSzJoFkdAqeArVH4GlnV9lChoBmgJaA9DCA2reCPzKATAlIaUUpRoFUsyaBZHQKnf1PtUn5V1fZQoaAZoCWgPQwhlNsgkI2fxv5SGlFKUaBVLMmgWR0Cp34Ccf/3ndX2UKGgGaAloD0MIF9aNd0cmA8CUhpRSlGgVSzJoFkdAqd8qpiqhlHV9lChoBmgJaA9DCMzSTs3lhgDAlIaUUpRoFUsyaBZHQKniF4i5d4V1fZQoaAZoCWgPQwhyF2GKcin1v5SGlFKUaBVLMmgWR0Cp4cEYO2AodX2UKGgGaAloD0MIW0QUkzegBcCUhpRSlGgVSzJoFkdAqeFqi9IwunV9lChoBmgJaA9DCFDkSdI1k/W/lIaUUpRoFUsyaBZHQKnhFSaVlf91fZQoaAZoCWgPQwg7iQj/IkgEwJSGlFKUaBVLMmgWR0Cp5EQob4rSdX2UKGgGaAloD0MI3IDPDyMEAsCUhpRSlGgVSzJoFkdAqePuKoAGS3V9lChoBmgJaA9DCLCRJAhXAPe/lIaUUpRoFUsyaBZHQKnjmBgeA/d1fZQoaAZoCWgPQwhk5ZfBGDEHwJSGlFKUaBVLMmgWR0Cp40H/tICmdX2UKGgGaAloD0MI1PAtrBtv9b+UhpRSlGgVSzJoFkdAqeZnT3IuG3V9lChoBmgJaA9DCNF4Iojz8PC/lIaUUpRoFUsyaBZHQKnmEPNmlIp1fZQoaAZoCWgPQwgSTDWzloL9v5SGlFKUaBVLMmgWR0Cp5bsAFPi2dX2UKGgGaAloD0MIQ8ajVMKT+b+UhpRSlGgVSzJoFkdAqeVk7hegMHV9lChoBmgJaA9DCO1FtB1T9wXAlIaUUpRoFUsyaBZHQKnoaUxmCiB1fZQoaAZoCWgPQwit9xvtuCH2v5SGlFKUaBVLMmgWR0Cp6BLW7OE/dX2UKGgGaAloD0MIAvBPqRLl7r+UhpRSlGgVSzJoFkdAqee8d92HL3V9lChoBmgJaA9DCJXUCWgirP6/lIaUUpRoFUsyaBZHQKnnZb/Ot4l1fZQoaAZoCWgPQwhRTN4AM1/8v5SGlFKUaBVLMmgWR0Cp6aiVB2OidX2UKGgGaAloD0MI1As+zcnrBMCUhpRSlGgVSzJoFkdAqelQ3m3fAXV9lChoBmgJaA9DCInt7gG6Lw7AlIaUUpRoFUsyaBZHQKno+cEvCdl1fZQoaAZoCWgPQwga+bziqScDwJSGlFKUaBVLMmgWR0Cp6KJzT4L1dX2UKGgGaAloD0MIkQ4PYfxUAMCUhpRSlGgVSzJoFkdAqerNwcYIjXV9lChoBmgJaA9DCPT91HjpJvy/lIaUUpRoFUsyaBZHQKnqdmITGo91fZQoaAZoCWgPQwjarPpcbUXyv5SGlFKUaBVLMmgWR0Cp6h87p3X7dX2UKGgGaAloD0MInkXvVMD9CsCUhpRSlGgVSzJoFkdAqenHqs2ehHV9lChoBmgJaA9DCP96hQX3A+O/lIaUUpRoFUsyaBZHQKnr8xPfsNV1fZQoaAZoCWgPQwj7yRgfZu/4v5SGlFKUaBVLMmgWR0Cp65t5dGAkdX2UKGgGaAloD0MIrDqrBfbY87+UhpRSlGgVSzJoFkdAqetEPczqKXV9lChoBmgJaA9DCNfdPNUhVwnAlIaUUpRoFUsyaBZHQKnq7MEidJ91fZQoaAZoCWgPQwgNObaeIXwCwJSGlFKUaBVLMmgWR0Cp7UiHZbpvdX2UKGgGaAloD0MIle8ZidBYEMCUhpRSlGgVSzJoFkdAqezxC6YmcHV9lChoBmgJaA9DCAPuef60MQrAlIaUUpRoFUsyaBZHQKnsmfEGZ/l1fZQoaAZoCWgPQwgydOygEpf9v5SGlFKUaBVLMmgWR0Cp7EOEM9bHdX2UKGgGaAloD0MIfzFbsipC8r+UhpRSlGgVSzJoFkdAqe6gAsCkoHV9lChoBmgJaA9DCFN40Oy6d/i/lIaUUpRoFUsyaBZHQKnuSXtShrZ1fZQoaAZoCWgPQwjECOHRxnEAwJSGlFKUaBVLMmgWR0Cp7fJ7kXDWdX2UKGgGaAloD0MIGvm84qkHAsCUhpRSlGgVSzJoFkdAqe2bUwztTnV9lChoBmgJaA9DCGL2su20tfW/lIaUUpRoFUsyaBZHQKnv2OhCdBl1fZQoaAZoCWgPQwh72XbaGvEGwJSGlFKUaBVLMmgWR0Cp74FlTWGzdX2UKGgGaAloD0MIFW9kHvnDAcCUhpRSlGgVSzJoFkdAqe8qV4X403V9lChoBmgJaA9DCGoTJ/c7VPe/lIaUUpRoFUsyaBZHQKnu0w+MZP51fZQoaAZoCWgPQwiwH2KDhXMLwJSGlFKUaBVLMmgWR0Cp8PdDhLoPdX2UKGgGaAloD0MI8xsmGqTg+r+UhpRSlGgVSzJoFkdAqfCfnW8RMHV9lChoBmgJaA9DCDwUBfpEvgjAlIaUUpRoFUsyaBZHQKnwSIX0oSd1fZQoaAZoCWgPQwh41JgQc0kDwJSGlFKUaBVLMmgWR0Cp7/EZ75VPdX2UKGgGaAloD0MIm/7sR4oIB8CUhpRSlGgVSzJoFkdAqfIJl6JIlXV9lChoBmgJaA9DCO1+FeC7LQbAlIaUUpRoFUsyaBZHQKnxsp6QeV91fZQoaAZoCWgPQwg8aHbdW/EBwJSGlFKUaBVLMmgWR0Cp8VwGfPHDdX2UKGgGaAloD0MIppwv9l58A8CUhpRSlGgVSzJoFkdAqfEEsFt8/nV9lChoBmgJaA9DCLK5ap4jcu+/lIaUUpRoFUsyaBZHQKnzPGBnSOR1fZQoaAZoCWgPQwjerpemCBAOwJSGlFKUaBVLMmgWR0Cp8uS2QXANdX2UKGgGaAloD0MIJnLBGfxdD8CUhpRSlGgVSzJoFkdAqfKNVaOghHV9lChoBmgJaA9DCFvptdlYSQDAlIaUUpRoFUsyaBZHQKnyNiDM/yJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -2.
|
|
|
1 |
+
{"mean_reward": -2.6008615132886916, "std_reward": 0.6959146363280999, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-17T02:49:06.943888"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:565e47611e86776fbc8dcca8d221525b8a6a9c21bc17a2eee0f3f43c156cc7e4
|
3 |
size 3056
|