Commit
·
55c5ddb
1
Parent(s):
01aaf1e
Inital Commit
Browse files- README.md +37 -0
- config.json +1 -0
- lunar_model.zip +3 -0
- lunar_model/_stable_baselines3_version +1 -0
- lunar_model/data +99 -0
- lunar_model/policy.optimizer.pth +3 -0
- lunar_model/policy.pth +3 -0
- lunar_model/pytorch_variables.pth +3 -0
- lunar_model/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.49 +/- 20.05
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7be72b0bf7f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be72b0bf880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be72b0bf910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be72b0bf9a0>", "_build": "<function ActorCriticPolicy._build at 0x7be72b0bfa30>", "forward": "<function ActorCriticPolicy.forward at 0x7be72b0bfac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7be72b0bfb50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be72b0bfbe0>", "_predict": "<function ActorCriticPolicy._predict at 0x7be72b0bfc70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be72b0bfd00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be72b0bfd90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7be72b0bfe20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7be72b25aac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698970906212469966, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKY3Vr4orsK8ix2xOsGTKDne/yk++9TluQAAgD8AAIA/DfTKvbYLI7zqiEY+YPv+PJoViL0yjs49AACAPwAAAABAwU2+uOOjPSL4kz5qbVS+SWacuRbArj0AAAAAAAAAAIBB2z24Fus6y8RKvvDdUL5s/wm94//GOwAAAAAAAAAAM18BPawapD/CPEo+qswRvzffAj0BxbA9AAAAAAAAAAAzgpy9SNmNOcJvrj2nWSKzIpFCu0nPNrMAAAAAAAAAAE0KqL3Rjf8+Pwqsu1m57765Li+9SlggPQAAAAAAAAAAkyc+PijrsrwSdXQ7I+XXuRffGr5WmqO6AACAPwAAgD/aed498FWpP8UkmT5fsxi/yKrBPTqlXLwAAAAAAAAAAC2UOb6bS7C8eOM0OT+PyjdOmRw+orx8uAAAgD8AAIA/wK9UPk6i17zIU846hCNOuR3XPb5fmAq6AACAPwAAgD+TXBW+7j7ZPi5MtDyRrMe+akWRvSLTBj0AAAAAAAAAADNI2Ly117k/fQMov0rr1D6ch748tj+dPQAAAAAAAAAA+vowPk+QerzskZQ7oX8Iuhuw5r2Y09u6AACAPwAAgD+AGAs+KkqeP4KDKj8WkQy/hkniPabpjT4AAAAAAAAAAPOLuL1kp3U+mFz7Pct3er4NKt68o4h0PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKursByS3eMAWyUTQMBjAF0lEdAmEYLNjbzsnV9lChoBkdAci+nBciW3WgHTSwBaAhHQJhGY04zabp1fZQoaAZHQG0WP3i704BoB03NAmgIR0CYRrf7JnxsdX2UKGgGR0Bw0c9IPK+0aAdL8mgIR0CYRyFuNxVAdX2UKGgGR0BwfTOE/SpjaAdLwGgIR0CYRx238XN1dX2UKGgGR0Bvk1T3qRlpaAdL2mgIR0CYSEeXRgJDdX2UKGgGR0BwST+YMOPOaAdL3mgIR0CYSRfOD8LsdX2UKGgGR0Bwg5mYjSogaAdL8GgIR0CYSUJLM9r5dX2UKGgGR0BwBI31jAi3aAdNSwFoCEdAmEtUwztTk3V9lChoBkdAcKmd92HLzWgHS9loCEdAmEvRacI7eXV9lChoBkdAcatRbbDdg2gHS7poCEdAmEvg+t8uz3V9lChoBkdAcUb/ub7TD2gHS9BoCEdAmEwr8vVVgnV9lChoBkdAbze/RE4NqmgHS8VoCEdAmEzgtBfKIXV9lChoBkdAcMJblA/s3WgHS9RoCEdAmEzyCBf8dnV9lChoBkdAcPxYoy9EkWgHTVYBaAhHQJhOW5f+jud1fZQoaAZHQG9d7Sy+pOxoB0vYaAhHQJhOoH5aePJ1fZQoaAZHQHHwgDaGpMpoB0v/aAhHQJhOpcKPXCl1fZQoaAZHQHIK3vUjLSxoB0vqaAhHQJhQHV7Qb+91fZQoaAZHQHIVtXLeQ+5oB0vzaAhHQJhQNisny/d1fZQoaAZHQHCixOclPadoB0vIaAhHQJhRMk0Jng51fZQoaAZHQHGVlxS5y2hoB0u8aAhHQJhRUWweNkx1fZQoaAZHQG5jMewLVnVoB0vaaAhHQJhSQW8AaNx1fZQoaAZHQHFkJ5Z8rqdoB0vSaAhHQJhSUsSTQmh1fZQoaAZHQHEqolQdjoZoB0vVaAhHQJhTG0Sh8IB1fZQoaAZHQG/alVDKHO9oB0vbaAhHQJhTWo1k1/F1fZQoaAZHQGVjpPAO8TVoB03oA2gIR0CYU6N83MpxdX2UKGgGR0Bwtq5TZQHiaAdLymgIR0CYVCsFdLQHdX2UKGgGR0BvpuQ4jrzHaAdLymgIR0CYVGzWf9P2dX2UKGgGR0BwjfCxeLNwaAdLzmgIR0CYVI3nZCfIdX2UKGgGR0Bufaay8jA0aAdLymgIR0CYViWhAWzodX2UKGgGR0AJSX6ZYxL1aAdLumgIR0CYVy4MnZ00dX2UKGgGR0Bt2FRNyo4uaAdL4WgIR0CYV0LOAy2ydX2UKGgGR0Blrw44p+c6aAdN6ANoCEdAmFgY42jwhHV9lChoBkdAcYY+IMz/ImgHS8ZoCEdAmFkyHM2WIHV9lChoBkdAcDhFYdQwbmgHS/BoCEdAmFlh2GIsRXV9lChoBkdAcJTjHXEqD2gHS+xoCEdAmFq2Yv38GnV9lChoBkdAYPyKPXCj12gHTegDaAhHQJha6eiBXjl1fZQoaAZHQHKSCDqW1MNoB0vfaAhHQJhb0Lx7RfF1fZQoaAZHQHEGlEVnEl5oB0v0aAhHQJhcYQ/X5Fh1fZQoaAZHQHFKoSHuZ1FoB0vpaAhHQJhcsLjPv8Z1fZQoaAZHQHA1XztkWh1oB0vNaAhHQJhc510T1011fZQoaAZHQHEOlE3Kji5oB0vkaAhHQJhdqmuTzNF1fZQoaAZHQHF4d5D7ZWdoB0vHaAhHQJhfyMcZLqV1fZQoaAZHQHG0f2GqPwNoB0vLaAhHQJhgvibUgB91fZQoaAZHQGKuCnHeaa1oB03oA2gIR0CYYYZGKAJ+dX2UKGgGR0BxPSdhAnlXaAdNVgFoCEdAmGJhT4tYjnV9lChoBkdAcWfFbmlqJ2gHTSoBaAhHQJhjNLi++M91fZQoaAZHQHDGnCCSRr9oB0viaAhHQJhkw0gr6Lx1fZQoaAZHQHCTG+oLofVoB0vgaAhHQJhk5TXJ5mh1fZQoaAZHQHFbA2ycCo1oB0u7aAhHQJhlUBq9Gqh1fZQoaAZHQHC4yF0xM39oB0vaaAhHQJhmfoUzsQd1fZQoaAZHQHFjEp7TlT5oB0vjaAhHQJhmlNO/L1V1fZQoaAZHQHGqetOmBOJoB0v7aAhHQJhnDpdKNAF1fZQoaAZHQHGsTtG/etVoB01IAWgIR0CYZ7fgaWHDdX2UKGgGR0BishzBAOawaAdN6ANoCEdAmGgOKO1fFHV9lChoBkdAcTPUoKD02GgHS8VoCEdAmGhYJE6T4nV9lChoBkdAcbDQUHpr12gHTbUBaAhHQJhpWJqIrOJ1fZQoaAZHQHIE4sunMt9oB0vcaAhHQJhpeBczImx1fZQoaAZHQHBOAYxcmjVoB0vcaAhHQJhp4QVbiZR1fZQoaAZHQG7aGB4D9wZoB0vNaAhHQJhp+NtIkJN1fZQoaAZHQHEznpW3jMpoB0vkaAhHQJhrMCvHLid1fZQoaAZHQHJU1TNt65ZoB0vTaAhHQJhrsk4WDYh1fZQoaAZHQHDhzzundftoB0vWaAhHQJhsPYSQHRl1fZQoaAZHQHDVVGLDQ7doB0vYaAhHQJhtaZjQRf51fZQoaAZHQHBcEjTrmhdoB0vUaAhHQJhtxML4N7V1fZQoaAZHQG0i7T+ee4FoB0vhaAhHQJht2KVII4V1fZQoaAZHQHGKX4O+ZgJoB0vXaAhHQJhueS5iExt1fZQoaAZHQHHx0Y4yXUpoB0vqaAhHQJhwOKNyYHB1fZQoaAZHQG6mUZm7J4loB01MAWgIR0CYcLKUFB6bdX2UKGgGR0Bvumnl4keIaAdL6GgIR0CYcgo99tuUdX2UKGgGR0ByFmP91loUaAdL5WgIR0CYcsAnlXA/dX2UKGgGR0BzTywljVhDaAdL6WgIR0CYcsycTakAdX2UKGgGR0BwQ0sg+yJLaAdL12gIR0CYc+C4jKPodX2UKGgGR0BwUjWvr4WUaAdLt2gIR0CYdXUZeiSJdX2UKGgGR0Bx94VYZEUkaAdL8GgIR0CYdbT101ZUdX2UKGgGR0Bv+qGFi8WcaAdL5GgIR0CYddc+qzZ6dX2UKGgGR0Bw4xwqAjIJaAdL02gIR0CYdr2ovSMMdX2UKGgGR0BxLe+23KB/aAdL6WgIR0CYdzq3mV7hdX2UKGgGR0BxEfKT0QK8aAdL22gIR0CYd89h7VridX2UKGgGR0BwTsNNJvpAaAdL7WgIR0CYeotV7x/edX2UKGgGR0BvzfA2ycCpaAdL0mgIR0CYe0gxrSE2dX2UKGgGR0BwNdPO6d1/aAdNEQFoCEdAmHzUnb7CSHV9lChoBkdAcII6Y3Ns32gHS/doCEdAmH3EfcN6PnV9lChoBkdAcb8CeEqUeWgHS9JoCEdAmH6dZNfw7XV9lChoBkdAcPKtHQQcxWgHS89oCEdAmH7L56+nInV9lChoBkdAcQkPYnOSn2gHS9ZoCEdAmIAj9sJpnHV9lChoBkdAcvM5/9YOlWgHS/xoCEdAmIA4iTt9hXV9lChoBkdAcr2pqASWaGgHTUUBaAhHQJiAYnc+JP91fZQoaAZHQGHRh1klNURoB03oA2gIR0CYgXwL3K0VdX2UKGgGR0ByFzs/pt78aAdLuGgIR0CYgZJSBK+SdX2UKGgGR0BxAtCLMs6JaAdNEgFoCEdAmIJ9hVlwtXV9lChoBkdAcubF4s3AEmgHS+5oCEdAmIPF/x2B8XV9lChoBkdAcXm+fRNRFmgHS8poCEdAmIRSnk1dgXV9lChoBkdAY6S1YQrc02gHTegDaAhHQJiEuV9nbqR1fZQoaAZHQHGnVstTUAloB0viaAhHQJiF8CcPOIJ1fZQoaAZHQHLHm/vfCQ9oB0voaAhHQJiGSgTRIBl1fZQoaAZHQHBcZvgm7atoB0vcaAhHQJiHMhnrY5F1fZQoaAZHQHL7egctGutoB0vnaAhHQJiH1AgPmPp1fZQoaAZHQHOtUF8ohIRoB0vxaAhHQJiH+r/82rJ1fZQoaAZHQHFTkAtFrmBoB0vUaAhHQJiIUWxhUip1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
lunar_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7ca82e86720db40098e5b384e18fd9766273d0e09c65a4ea12eb9e8676bf094
|
3 |
+
size 147949
|
lunar_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
lunar_model/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7be72b0bf7f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be72b0bf880>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be72b0bf910>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be72b0bf9a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7be72b0bfa30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7be72b0bfac0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7be72b0bfb50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be72b0bfbe0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7be72b0bfc70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be72b0bfd00>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be72b0bfd90>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7be72b0bfe20>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7be72b25aac0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1698970906212469966,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKY3Vr4orsK8ix2xOsGTKDne/yk++9TluQAAgD8AAIA/DfTKvbYLI7zqiEY+YPv+PJoViL0yjs49AACAPwAAAABAwU2+uOOjPSL4kz5qbVS+SWacuRbArj0AAAAAAAAAAIBB2z24Fus6y8RKvvDdUL5s/wm94//GOwAAAAAAAAAAM18BPawapD/CPEo+qswRvzffAj0BxbA9AAAAAAAAAAAzgpy9SNmNOcJvrj2nWSKzIpFCu0nPNrMAAAAAAAAAAE0KqL3Rjf8+Pwqsu1m57765Li+9SlggPQAAAAAAAAAAkyc+PijrsrwSdXQ7I+XXuRffGr5WmqO6AACAPwAAgD/aed498FWpP8UkmT5fsxi/yKrBPTqlXLwAAAAAAAAAAC2UOb6bS7C8eOM0OT+PyjdOmRw+orx8uAAAgD8AAIA/wK9UPk6i17zIU846hCNOuR3XPb5fmAq6AACAPwAAgD+TXBW+7j7ZPi5MtDyRrMe+akWRvSLTBj0AAAAAAAAAADNI2Ly117k/fQMov0rr1D6ch748tj+dPQAAAAAAAAAA+vowPk+QerzskZQ7oX8Iuhuw5r2Y09u6AACAPwAAgD+AGAs+KkqeP4KDKj8WkQy/hkniPabpjT4AAAAAAAAAAPOLuL1kp3U+mFz7Pct3er4NKt68o4h0PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKursByS3eMAWyUTQMBjAF0lEdAmEYLNjbzsnV9lChoBkdAci+nBciW3WgHTSwBaAhHQJhGY04zabp1fZQoaAZHQG0WP3i704BoB03NAmgIR0CYRrf7JnxsdX2UKGgGR0Bw0c9IPK+0aAdL8mgIR0CYRyFuNxVAdX2UKGgGR0BwfTOE/SpjaAdLwGgIR0CYRx238XN1dX2UKGgGR0Bvk1T3qRlpaAdL2mgIR0CYSEeXRgJDdX2UKGgGR0BwST+YMOPOaAdL3mgIR0CYSRfOD8LsdX2UKGgGR0Bwg5mYjSogaAdL8GgIR0CYSUJLM9r5dX2UKGgGR0BwBI31jAi3aAdNSwFoCEdAmEtUwztTk3V9lChoBkdAcKmd92HLzWgHS9loCEdAmEvRacI7eXV9lChoBkdAcatRbbDdg2gHS7poCEdAmEvg+t8uz3V9lChoBkdAcUb/ub7TD2gHS9BoCEdAmEwr8vVVgnV9lChoBkdAbze/RE4NqmgHS8VoCEdAmEzgtBfKIXV9lChoBkdAcMJblA/s3WgHS9RoCEdAmEzyCBf8dnV9lChoBkdAcPxYoy9EkWgHTVYBaAhHQJhOW5f+jud1fZQoaAZHQG9d7Sy+pOxoB0vYaAhHQJhOoH5aePJ1fZQoaAZHQHHwgDaGpMpoB0v/aAhHQJhOpcKPXCl1fZQoaAZHQHIK3vUjLSxoB0vqaAhHQJhQHV7Qb+91fZQoaAZHQHIVtXLeQ+5oB0vzaAhHQJhQNisny/d1fZQoaAZHQHCixOclPadoB0vIaAhHQJhRMk0Jng51fZQoaAZHQHGVlxS5y2hoB0u8aAhHQJhRUWweNkx1fZQoaAZHQG5jMewLVnVoB0vaaAhHQJhSQW8AaNx1fZQoaAZHQHFkJ5Z8rqdoB0vSaAhHQJhSUsSTQmh1fZQoaAZHQHEqolQdjoZoB0vVaAhHQJhTG0Sh8IB1fZQoaAZHQG/alVDKHO9oB0vbaAhHQJhTWo1k1/F1fZQoaAZHQGVjpPAO8TVoB03oA2gIR0CYU6N83MpxdX2UKGgGR0Bwtq5TZQHiaAdLymgIR0CYVCsFdLQHdX2UKGgGR0BvpuQ4jrzHaAdLymgIR0CYVGzWf9P2dX2UKGgGR0BwjfCxeLNwaAdLzmgIR0CYVI3nZCfIdX2UKGgGR0Bufaay8jA0aAdLymgIR0CYViWhAWzodX2UKGgGR0AJSX6ZYxL1aAdLumgIR0CYVy4MnZ00dX2UKGgGR0Bt2FRNyo4uaAdL4WgIR0CYV0LOAy2ydX2UKGgGR0Blrw44p+c6aAdN6ANoCEdAmFgY42jwhHV9lChoBkdAcYY+IMz/ImgHS8ZoCEdAmFkyHM2WIHV9lChoBkdAcDhFYdQwbmgHS/BoCEdAmFlh2GIsRXV9lChoBkdAcJTjHXEqD2gHS+xoCEdAmFq2Yv38GnV9lChoBkdAYPyKPXCj12gHTegDaAhHQJha6eiBXjl1fZQoaAZHQHKSCDqW1MNoB0vfaAhHQJhb0Lx7RfF1fZQoaAZHQHEGlEVnEl5oB0v0aAhHQJhcYQ/X5Fh1fZQoaAZHQHFKoSHuZ1FoB0vpaAhHQJhcsLjPv8Z1fZQoaAZHQHA1XztkWh1oB0vNaAhHQJhc510T1011fZQoaAZHQHEOlE3Kji5oB0vkaAhHQJhdqmuTzNF1fZQoaAZHQHF4d5D7ZWdoB0vHaAhHQJhfyMcZLqV1fZQoaAZHQHG0f2GqPwNoB0vLaAhHQJhgvibUgB91fZQoaAZHQGKuCnHeaa1oB03oA2gIR0CYYYZGKAJ+dX2UKGgGR0BxPSdhAnlXaAdNVgFoCEdAmGJhT4tYjnV9lChoBkdAcWfFbmlqJ2gHTSoBaAhHQJhjNLi++M91fZQoaAZHQHDGnCCSRr9oB0viaAhHQJhkw0gr6Lx1fZQoaAZHQHCTG+oLofVoB0vgaAhHQJhk5TXJ5mh1fZQoaAZHQHFbA2ycCo1oB0u7aAhHQJhlUBq9Gqh1fZQoaAZHQHC4yF0xM39oB0vaaAhHQJhmfoUzsQd1fZQoaAZHQHFjEp7TlT5oB0vjaAhHQJhmlNO/L1V1fZQoaAZHQHGqetOmBOJoB0v7aAhHQJhnDpdKNAF1fZQoaAZHQHGsTtG/etVoB01IAWgIR0CYZ7fgaWHDdX2UKGgGR0BishzBAOawaAdN6ANoCEdAmGgOKO1fFHV9lChoBkdAcTPUoKD02GgHS8VoCEdAmGhYJE6T4nV9lChoBkdAcbDQUHpr12gHTbUBaAhHQJhpWJqIrOJ1fZQoaAZHQHIE4sunMt9oB0vcaAhHQJhpeBczImx1fZQoaAZHQHBOAYxcmjVoB0vcaAhHQJhp4QVbiZR1fZQoaAZHQG7aGB4D9wZoB0vNaAhHQJhp+NtIkJN1fZQoaAZHQHEznpW3jMpoB0vkaAhHQJhrMCvHLid1fZQoaAZHQHJU1TNt65ZoB0vTaAhHQJhrsk4WDYh1fZQoaAZHQHDhzzundftoB0vWaAhHQJhsPYSQHRl1fZQoaAZHQHDVVGLDQ7doB0vYaAhHQJhtaZjQRf51fZQoaAZHQHBcEjTrmhdoB0vUaAhHQJhtxML4N7V1fZQoaAZHQG0i7T+ee4FoB0vhaAhHQJht2KVII4V1fZQoaAZHQHGKX4O+ZgJoB0vXaAhHQJhueS5iExt1fZQoaAZHQHHx0Y4yXUpoB0vqaAhHQJhwOKNyYHB1fZQoaAZHQG6mUZm7J4loB01MAWgIR0CYcLKUFB6bdX2UKGgGR0Bvumnl4keIaAdL6GgIR0CYcgo99tuUdX2UKGgGR0ByFmP91loUaAdL5WgIR0CYcsAnlXA/dX2UKGgGR0BzTywljVhDaAdL6WgIR0CYcsycTakAdX2UKGgGR0BwQ0sg+yJLaAdL12gIR0CYc+C4jKPodX2UKGgGR0BwUjWvr4WUaAdLt2gIR0CYdXUZeiSJdX2UKGgGR0Bx94VYZEUkaAdL8GgIR0CYdbT101ZUdX2UKGgGR0Bv+qGFi8WcaAdL5GgIR0CYddc+qzZ6dX2UKGgGR0Bw4xwqAjIJaAdL02gIR0CYdr2ovSMMdX2UKGgGR0BxLe+23KB/aAdL6WgIR0CYdzq3mV7hdX2UKGgGR0BxEfKT0QK8aAdL22gIR0CYd89h7VridX2UKGgGR0BwTsNNJvpAaAdL7WgIR0CYeotV7x/edX2UKGgGR0BvzfA2ycCpaAdL0mgIR0CYe0gxrSE2dX2UKGgGR0BwNdPO6d1/aAdNEQFoCEdAmHzUnb7CSHV9lChoBkdAcII6Y3Ns32gHS/doCEdAmH3EfcN6PnV9lChoBkdAcb8CeEqUeWgHS9JoCEdAmH6dZNfw7XV9lChoBkdAcPKtHQQcxWgHS89oCEdAmH7L56+nInV9lChoBkdAcQkPYnOSn2gHS9ZoCEdAmIAj9sJpnHV9lChoBkdAcvM5/9YOlWgHS/xoCEdAmIA4iTt9hXV9lChoBkdAcr2pqASWaGgHTUUBaAhHQJiAYnc+JP91fZQoaAZHQGHRh1klNURoB03oA2gIR0CYgXwL3K0VdX2UKGgGR0ByFzs/pt78aAdLuGgIR0CYgZJSBK+SdX2UKGgGR0BxAtCLMs6JaAdNEgFoCEdAmIJ9hVlwtXV9lChoBkdAcubF4s3AEmgHS+5oCEdAmIPF/x2B8XV9lChoBkdAcXm+fRNRFmgHS8poCEdAmIRSnk1dgXV9lChoBkdAY6S1YQrc02gHTegDaAhHQJiEuV9nbqR1fZQoaAZHQHGnVstTUAloB0viaAhHQJiF8CcPOIJ1fZQoaAZHQHLHm/vfCQ9oB0voaAhHQJiGSgTRIBl1fZQoaAZHQHBcZvgm7atoB0vcaAhHQJiHMhnrY5F1fZQoaAZHQHL7egctGutoB0vnaAhHQJiH1AgPmPp1fZQoaAZHQHOtUF8ohIRoB0vxaAhHQJiH+r/82rJ1fZQoaAZHQHFTkAtFrmBoB0vUaAhHQJiIUWxhUip1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
lunar_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ece1a648fe03d2436b3491fcb60f85a52afe7f02d7d446b4bede418d48f8dca
|
3 |
+
size 88362
|
lunar_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dc186cdda1feb23f4ac3f7acae442ec2cb878b8f88c648a4043a988099faa43
|
3 |
+
size 43762
|
lunar_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
lunar_model/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (175 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.48855059999994, "std_reward": 20.054473429614628, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-03T00:51:57.059318"}
|