Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 257.51 +/- 19.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b8a98622440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b8a986224d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b8a98622560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b8a986225f0>", "_build": "<function ActorCriticPolicy._build at 0x7b8a98622680>", "forward": "<function ActorCriticPolicy.forward at 0x7b8a98622710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b8a986227a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b8a98622830>", "_predict": "<function ActorCriticPolicy._predict at 0x7b8a986228c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b8a98622950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b8a986229e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b8a98622a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b8a9fe05240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1007616, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699330526024918300, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACMNoj4NrTw/SArAPaanfb5fwk8+plSBvQAAAAAAAAAAmgkJvUixwLoVppm7N8mJPO/W8zqWu2+9AACAPwAAgD8t2LE+HhZqPyDrNj3quoe+WuMhPkUTDb0AAAAAAAAAAM0McDyrFgw/EKLZvY3rgr5L/bi8SXYtPAAAAAAAAAAAU0unPp/0ND/dQiG+zM4zvlDIcj04G8y9AAAAAAAAAADm3Fg+6lkLPzCd/r3VgSu+ci79PN5h7DsAAAAAAAAAAADH9j02QzE/7hKuvT2fYr5T9xa7BBbDPAAAAAAAAAAAOlJ2vmQopj8es6i+Zogvvj6Bbr7mEMM9AAAAAAAAAAAzioE+C3luP865BT7zSqq+BGh2PvrtAr4AAAAAAAAAABrehL3SAqc85k1YPsrbk75j2IM9Ii9VugAAAAAAAAAAZuhCvK7V8z2eoy69YBBnvvAH6ruH8zi8AAAAAAAAAACanxE9rOckP0xaI7wyaTO+Lu8uu93OnT0AAAAAAAAAADXCgL43l3s/C++AvaQGb76tfyC+yomCPAAAAAAAAAAAQziNPvLgMT8KZ4y+VFMpvgBBiTymFhG9AAAAAAAAAACafGe918RbP23GEr1PhFe+LIM0vQ6SizwAAAAAAAAAAMCfwj2e6FA/m6DKPNYdeb7agIM9tlhZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFHJhfjS5RWMAWyUTSsBjAF0lEdAm4HLjLjgh3V9lChoBkdAcxlSm65G0GgHTTIBaAhHQJuByxNZeRh1fZQoaAZHQG/5hppN9IBoB01yAWgIR0Cbgd33pOerdX2UKGgGR0Bx9/D63y7PaAdNVQFoCEdAm4J11GLDRHV9lChoBkdAbjM/XXiBG2gHTWcBaAhHQJuCn1M/QjV1fZQoaAZHQHFcxzJZGKBoB01uAWgIR0CbgyO6NEPUdX2UKGgGR0BwkT6fra/RaAdNUAFoCEdAm4SMFUyYX3V9lChoBkdAcIVRXfZVXGgHTVsBaAhHQJuEvKPn0TV1fZQoaAZHQHAO2LYPGyZoB011AWgIR0CbhbxhlUZOdX2UKGgGR0BxSXbqQiiZaAdNYAFoCEdAm5q7+PzWgHV9lChoBkdAbnEOktVaOmgHTUYBaAhHQJua+GahHsl1fZQoaAZHQHCKcGTs6aNoB01cAWgIR0Cbm/qjrRjSdX2UKGgGR0BwW65tm+TNaAdNcQFoCEdAm52rB42S+3V9lChoBkdAck2mMOwxFmgHTWYBaAhHQJudrH2h7E51fZQoaAZHQHC35Pdl/YtoB00tAWgIR0CboMO2RaHLdX2UKGgGR0BxsbjjrAxjaAdNQgFoCEdAm6DjB2wFDHV9lChoBkdAccMs8xKxs2gHTVsBaAhHQJuh87GNrCZ1fZQoaAZHQG1k4+jdpItoB010AWgIR0CboyERJ2+xdX2UKGgGR0BtaMzoEB8yaAdNTgFoCEdAm6M++IuXeHV9lChoBkdAcH/T5O8CgmgHTYQBaAhHQJuj1/MGHHp1fZQoaAZHQG4Sv0yxiXpoB017AWgIR0CbpFCGvfTDdX2UKGgGR0ByDDHzYmLMaAdNRQFoCEdAm6cSmuTzNHV9lChoBkdAbtZwBo24u2gHTWoBaAhHQJunREQXhwV1fZQoaAZHQHBTpQLux8loB01hAWgIR0CbqaFL39JjdX2UKGgGR0Bx1G13MY/FaAdNawFoCEdAm6qdz8xbjnV9lChoBkdAbVH0Lc9GJGgHTV4BaAhHQJurwS7GvOh1fZQoaAZHQGt2QpnYg7poB02UAmgIR0CbrjHn2ZiNdX2UKGgGR0Bsd4M8YAKfaAdNWwFoCEdAm65svh60IHV9lChoBkdAcKoDcM3IdWgHTX0BaAhHQJuwVuVHFxZ1fZQoaAZHQG/LHxSYPXloB01MAWgIR0CbshaYNRWMdX2UKGgGR0BsI+ZJCjUNaAdNaQFoCEdAm8rTaXa8H3V9lChoBkdAbYyAMlTm4mgHTVIBaAhHQJvK3v7WNFV1fZQoaAZHQG6RbgbZOBVoB01DAWgIR0Cby/ZOSGJvdX2UKGgGR0BuSVmBe5WjaAdNdwFoCEdAm81vgaWHDnV9lChoBkdAbxUQRwqAjWgHTV8BaAhHQJvNkYR/ViF1fZQoaAZHQHHq7xVhkRVoB019AWgIR0CbzY+ZPVNIdX2UKGgGR0BsjFALRa5gaAdNVgFoCEdAm88naews5HV9lChoBkdAcYhpfhMrVmgHTTQBaAhHQJvPdNCZ4Od1fZQoaAZHQG8QzhxYJVtoB01OAWgIR0Cb0PsPrfLtdX2UKGgGR0BvubCWNWELaAdNjwFoCEdAm9ECGN70F3V9lChoBkdAcanVNpM6BGgHTS0BaAhHQJvSGJCSidt1fZQoaAZHQHFUIW+GoJloB01KAWgIR0Cb002KVII4dX2UKGgGR0Bx4v6ciGFjaAdNlQFoCEdAm9RO5nUUf3V9lChoBkdAcOn8stkFwGgHTU8BaAhHQJvUzoSteUp1fZQoaAZHQG9756MR6GBoB01fAWgIR0Cb1sUwBYFJdX2UKGgGR0Bxy2kk8ifQaAdNPwFoCEdAm9a/2Xb/O3V9lChoBkdAbhlNeMQ2/GgHTb8DaAhHQJvYiNJe3QV1fZQoaAZHQHFVWLYPGyZoB01SAWgIR0Cb2KSTQmeEdX2UKGgGR0BxkwSDh99daAdNLwFoCEdAm9jO2VmjCnV9lChoBkdAbklQKrq+rWgHTX8BaAhHQJvZKKHfuTl1fZQoaAZHQEqLBE8aGYdoB0vhaAhHQJvZb/EOy3V1fZQoaAZHQHIjqUmlZYBoB01PAWgIR0Cb2akK/mDEdX2UKGgGR0Bs7Rfa6BiDaAdNVAFoCEdAm9nn6dlNDnV9lChoBkdAcXQqx1PnCGgHTT0BaAhHQJvairXDm8x1fZQoaAZHQHCacXzlLe1oB01IAWgIR0Cb+Akfs/pudX2UKGgGR0BwxHtG/etTaAdNmAFoCEdAm/nRE4Nqg3V9lChoBkdAbmqMgEEDAGgHTXoBaAhHQJv7UTnJT2p1fZQoaAZHQGwASxzJZGNoB01XAWgIR0Cb/bpb2USqdX2UKGgGR0BxaIAWBSUDaAdNigFoCEdAm/31K5Cng3V9lChoBkdAcaZB6a9bo2gHTWgBaAhHQJv+iH0se4l1fZQoaAZHQGxCaa1Cw8poB008AWgIR0Cb/vu8K5TZdX2UKGgGR0Bsw/mJWNm2aAdNVAFoCEdAm/+q6WgOBnV9lChoBkdAcAKxb0OEumgHTVcBaAhHQJv/55mh/RV1fZQoaAZHQHBy/uw5eZ5oB01aAmgIR0CcAIdQO4G2dX2UKGgGR0BtdPYjB2wFaAdNYQFoCEdAnADlkH2RJXV9lChoBkdAcefzuWrwOWgHTTQBaAhHQJwBC+Eh7md1fZQoaAZHQGzcN78ejmFoB01dAWgIR0CcARf4REncdX2UKGgGR0BvdfmDDjzaaAdNVQFoCEdAnAFXPAwfyXV9lChoBkdAbeKKOT7l72gHTWABaAhHQJwBZCgK4QV1fZQoaAZHQDZQDlo11nxoB00mAWgIR0CcA0212JSBdX2UKGgGR0BxwTVFx4puaAdNRQFoCEdAnAXMF6iTMnV9lChoBkdAcZ7yVObiImgHTVoBaAhHQJwIHFjurp91fZQoaAZHQG/CUhV2icpoB01dAWgIR0CcH75hjOLSdX2UKGgGR0BsklruYx+KaAdNXAFoCEdAnCDaxPfsNXV9lChoBkdAcDpFd9lVcWgHTVUBaAhHQJwhDscABDJ1fZQoaAZHQHJ5EI1LrX1oB01sAWgIR0CcISFOwgTzdX2UKGgGR0BvbnEfkmx/aAdNUQFoCEdAnCIUo0ALiXV9lChoBkdAcD3foA4n4WgHTT4BaAhHQJwi3mA9V3l1fZQoaAZHQG0dJI+W4VhoB01NAWgIR0CcIt5imVJMdX2UKGgGR0Bub7ziCJ40aAdNagFoCEdAnCMyydFvynV9lChoBkdAbpsmplz2e2gHTUsBaAhHQJwjRg5R0lt1fZQoaAZHQG+JxSgoPTZoB01bAWgIR0CcJCANoakzdX2UKGgGR0Bu7WXXyy2QaAdNVQFoCEdAnCRXFcY64nV9lChoBkdAcaM1uBMBZWgHTVoBaAhHQJwkmUGFBY51fZQoaAZHQHIfyaRZED1oB01QAWgIR0CcJsR4hUzbdX2UKGgGR0BwB/C1qnFYaAdNTgFoCEdAnCpeXJHRTnV9lChoBkdAZDPPiT+vQmgHTegDaAhHQJwro3yZrpJ1fZQoaAZHQGxp8UM5OrRoB011AWgIR0CcL/5U96kZdX2UKGgGR0BwhWbYsd1daAdNYAFoCEdAnDIbhegL7XV9lChoBkdAcpxoBq9GqmgHTTUBaAhHQJwyfZpSJj51fZQoaAZHQHJ0As9SuQpoB01kAWgIR0CcM2XyAhB7dX2UKGgGR0BvYBCUornUaAdNUQFoCEdAnDN8yrPt2XV9lChoBkdAbnbTBqKxcGgHTT4BaAhHQJwzfnTy8SR1fZQoaAZHQGx3c6V+qipoB01iAWgIR0CcM3sMAmzCdX2UKGgGR0ByFXs3Q2MsaAdNUQFoCEdAnDSK3NLUTnV9lChoBkdAcGt4QSSNfmgHTYABaAhHQJw1BuBMBZJ1fZQoaAZHQG78aUiY9gZoB01OAWgIR0CcNVJVsDW9dX2UKGgGR0Br/Rxo7FKkaAdNXgFoCEdAnDXprgwXZXV9lChoBkdAbyva4c3l0mgHTYkBaAhHQJw2OAc1fmd1fZQoaAZHQHGrQQHzH0doB01oAWgIR0CcNl7NSqEOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 740, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 512, "gamma": 0.9999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:243e486de5d1ee9179bc96d4041893530a30d714fa9584b27fefc56a84f838a2
|
3 |
+
size 148053
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b8a98622440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b8a986224d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b8a98622560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b8a986225f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b8a98622680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b8a98622710>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b8a986227a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b8a98622830>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b8a986228c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b8a98622950>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b8a986229e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b8a98622a70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b8a9fe05240>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1007616,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1699330526024918300,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACMNoj4NrTw/SArAPaanfb5fwk8+plSBvQAAAAAAAAAAmgkJvUixwLoVppm7N8mJPO/W8zqWu2+9AACAPwAAgD8t2LE+HhZqPyDrNj3quoe+WuMhPkUTDb0AAAAAAAAAAM0McDyrFgw/EKLZvY3rgr5L/bi8SXYtPAAAAAAAAAAAU0unPp/0ND/dQiG+zM4zvlDIcj04G8y9AAAAAAAAAADm3Fg+6lkLPzCd/r3VgSu+ci79PN5h7DsAAAAAAAAAAADH9j02QzE/7hKuvT2fYr5T9xa7BBbDPAAAAAAAAAAAOlJ2vmQopj8es6i+Zogvvj6Bbr7mEMM9AAAAAAAAAAAzioE+C3luP865BT7zSqq+BGh2PvrtAr4AAAAAAAAAABrehL3SAqc85k1YPsrbk75j2IM9Ii9VugAAAAAAAAAAZuhCvK7V8z2eoy69YBBnvvAH6ruH8zi8AAAAAAAAAACanxE9rOckP0xaI7wyaTO+Lu8uu93OnT0AAAAAAAAAADXCgL43l3s/C++AvaQGb76tfyC+yomCPAAAAAAAAAAAQziNPvLgMT8KZ4y+VFMpvgBBiTymFhG9AAAAAAAAAACafGe918RbP23GEr1PhFe+LIM0vQ6SizwAAAAAAAAAAMCfwj2e6FA/m6DKPNYdeb7agIM9tlhZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFHJhfjS5RWMAWyUTSsBjAF0lEdAm4HLjLjgh3V9lChoBkdAcxlSm65G0GgHTTIBaAhHQJuByxNZeRh1fZQoaAZHQG/5hppN9IBoB01yAWgIR0Cbgd33pOerdX2UKGgGR0Bx9/D63y7PaAdNVQFoCEdAm4J11GLDRHV9lChoBkdAbjM/XXiBG2gHTWcBaAhHQJuCn1M/QjV1fZQoaAZHQHFcxzJZGKBoB01uAWgIR0CbgyO6NEPUdX2UKGgGR0BwkT6fra/RaAdNUAFoCEdAm4SMFUyYX3V9lChoBkdAcIVRXfZVXGgHTVsBaAhHQJuEvKPn0TV1fZQoaAZHQHAO2LYPGyZoB011AWgIR0CbhbxhlUZOdX2UKGgGR0BxSXbqQiiZaAdNYAFoCEdAm5q7+PzWgHV9lChoBkdAbnEOktVaOmgHTUYBaAhHQJua+GahHsl1fZQoaAZHQHCKcGTs6aNoB01cAWgIR0Cbm/qjrRjSdX2UKGgGR0BwW65tm+TNaAdNcQFoCEdAm52rB42S+3V9lChoBkdAck2mMOwxFmgHTWYBaAhHQJudrH2h7E51fZQoaAZHQHC35Pdl/YtoB00tAWgIR0CboMO2RaHLdX2UKGgGR0BxsbjjrAxjaAdNQgFoCEdAm6DjB2wFDHV9lChoBkdAccMs8xKxs2gHTVsBaAhHQJuh87GNrCZ1fZQoaAZHQG1k4+jdpItoB010AWgIR0CboyERJ2+xdX2UKGgGR0BtaMzoEB8yaAdNTgFoCEdAm6M++IuXeHV9lChoBkdAcH/T5O8CgmgHTYQBaAhHQJuj1/MGHHp1fZQoaAZHQG4Sv0yxiXpoB017AWgIR0CbpFCGvfTDdX2UKGgGR0ByDDHzYmLMaAdNRQFoCEdAm6cSmuTzNHV9lChoBkdAbtZwBo24u2gHTWoBaAhHQJunREQXhwV1fZQoaAZHQHBTpQLux8loB01hAWgIR0CbqaFL39JjdX2UKGgGR0Bx1G13MY/FaAdNawFoCEdAm6qdz8xbjnV9lChoBkdAbVH0Lc9GJGgHTV4BaAhHQJurwS7GvOh1fZQoaAZHQGt2QpnYg7poB02UAmgIR0CbrjHn2ZiNdX2UKGgGR0Bsd4M8YAKfaAdNWwFoCEdAm65svh60IHV9lChoBkdAcKoDcM3IdWgHTX0BaAhHQJuwVuVHFxZ1fZQoaAZHQG/LHxSYPXloB01MAWgIR0CbshaYNRWMdX2UKGgGR0BsI+ZJCjUNaAdNaQFoCEdAm8rTaXa8H3V9lChoBkdAbYyAMlTm4mgHTVIBaAhHQJvK3v7WNFV1fZQoaAZHQG6RbgbZOBVoB01DAWgIR0Cby/ZOSGJvdX2UKGgGR0BuSVmBe5WjaAdNdwFoCEdAm81vgaWHDnV9lChoBkdAbxUQRwqAjWgHTV8BaAhHQJvNkYR/ViF1fZQoaAZHQHHq7xVhkRVoB019AWgIR0CbzY+ZPVNIdX2UKGgGR0BsjFALRa5gaAdNVgFoCEdAm88naews5HV9lChoBkdAcYhpfhMrVmgHTTQBaAhHQJvPdNCZ4Od1fZQoaAZHQG8QzhxYJVtoB01OAWgIR0Cb0PsPrfLtdX2UKGgGR0BvubCWNWELaAdNjwFoCEdAm9ECGN70F3V9lChoBkdAcanVNpM6BGgHTS0BaAhHQJvSGJCSidt1fZQoaAZHQHFUIW+GoJloB01KAWgIR0Cb002KVII4dX2UKGgGR0Bx4v6ciGFjaAdNlQFoCEdAm9RO5nUUf3V9lChoBkdAcOn8stkFwGgHTU8BaAhHQJvUzoSteUp1fZQoaAZHQG9756MR6GBoB01fAWgIR0Cb1sUwBYFJdX2UKGgGR0Bxy2kk8ifQaAdNPwFoCEdAm9a/2Xb/O3V9lChoBkdAbhlNeMQ2/GgHTb8DaAhHQJvYiNJe3QV1fZQoaAZHQHFVWLYPGyZoB01SAWgIR0Cb2KSTQmeEdX2UKGgGR0BxkwSDh99daAdNLwFoCEdAm9jO2VmjCnV9lChoBkdAbklQKrq+rWgHTX8BaAhHQJvZKKHfuTl1fZQoaAZHQEqLBE8aGYdoB0vhaAhHQJvZb/EOy3V1fZQoaAZHQHIjqUmlZYBoB01PAWgIR0Cb2akK/mDEdX2UKGgGR0Bs7Rfa6BiDaAdNVAFoCEdAm9nn6dlNDnV9lChoBkdAcXQqx1PnCGgHTT0BaAhHQJvairXDm8x1fZQoaAZHQHCacXzlLe1oB01IAWgIR0Cb+Akfs/pudX2UKGgGR0BwxHtG/etTaAdNmAFoCEdAm/nRE4Nqg3V9lChoBkdAbmqMgEEDAGgHTXoBaAhHQJv7UTnJT2p1fZQoaAZHQGwASxzJZGNoB01XAWgIR0Cb/bpb2USqdX2UKGgGR0BxaIAWBSUDaAdNigFoCEdAm/31K5Cng3V9lChoBkdAcaZB6a9bo2gHTWgBaAhHQJv+iH0se4l1fZQoaAZHQGxCaa1Cw8poB008AWgIR0Cb/vu8K5TZdX2UKGgGR0Bsw/mJWNm2aAdNVAFoCEdAm/+q6WgOBnV9lChoBkdAcAKxb0OEumgHTVcBaAhHQJv/55mh/RV1fZQoaAZHQHBy/uw5eZ5oB01aAmgIR0CcAIdQO4G2dX2UKGgGR0BtdPYjB2wFaAdNYQFoCEdAnADlkH2RJXV9lChoBkdAcefzuWrwOWgHTTQBaAhHQJwBC+Eh7md1fZQoaAZHQGzcN78ejmFoB01dAWgIR0CcARf4REncdX2UKGgGR0BvdfmDDjzaaAdNVQFoCEdAnAFXPAwfyXV9lChoBkdAbeKKOT7l72gHTWABaAhHQJwBZCgK4QV1fZQoaAZHQDZQDlo11nxoB00mAWgIR0CcA0212JSBdX2UKGgGR0BxwTVFx4puaAdNRQFoCEdAnAXMF6iTMnV9lChoBkdAcZ7yVObiImgHTVoBaAhHQJwIHFjurp91fZQoaAZHQG/CUhV2icpoB01dAWgIR0CcH75hjOLSdX2UKGgGR0BsklruYx+KaAdNXAFoCEdAnCDaxPfsNXV9lChoBkdAcDpFd9lVcWgHTVUBaAhHQJwhDscABDJ1fZQoaAZHQHJ5EI1LrX1oB01sAWgIR0CcISFOwgTzdX2UKGgGR0BvbnEfkmx/aAdNUQFoCEdAnCIUo0ALiXV9lChoBkdAcD3foA4n4WgHTT4BaAhHQJwi3mA9V3l1fZQoaAZHQG0dJI+W4VhoB01NAWgIR0CcIt5imVJMdX2UKGgGR0Bub7ziCJ40aAdNagFoCEdAnCMyydFvynV9lChoBkdAbpsmplz2e2gHTUsBaAhHQJwjRg5R0lt1fZQoaAZHQG+JxSgoPTZoB01bAWgIR0CcJCANoakzdX2UKGgGR0Bu7WXXyy2QaAdNVQFoCEdAnCRXFcY64nV9lChoBkdAcaM1uBMBZWgHTVoBaAhHQJwkmUGFBY51fZQoaAZHQHIfyaRZED1oB01QAWgIR0CcJsR4hUzbdX2UKGgGR0BwB/C1qnFYaAdNTgFoCEdAnCpeXJHRTnV9lChoBkdAZDPPiT+vQmgHTegDaAhHQJwro3yZrpJ1fZQoaAZHQGxp8UM5OrRoB011AWgIR0CcL/5U96kZdX2UKGgGR0BwhWbYsd1daAdNYAFoCEdAnDIbhegL7XV9lChoBkdAcpxoBq9GqmgHTTUBaAhHQJwyfZpSJj51fZQoaAZHQHJ0As9SuQpoB01kAWgIR0CcM2XyAhB7dX2UKGgGR0BvYBCUornUaAdNUQFoCEdAnDN8yrPt2XV9lChoBkdAbnbTBqKxcGgHTT4BaAhHQJwzfnTy8SR1fZQoaAZHQGx3c6V+qipoB01iAWgIR0CcM3sMAmzCdX2UKGgGR0ByFXs3Q2MsaAdNUQFoCEdAnDSK3NLUTnV9lChoBkdAcGt4QSSNfmgHTYABaAhHQJw1BuBMBZJ1fZQoaAZHQG78aUiY9gZoB01OAWgIR0CcNVJVsDW9dX2UKGgGR0Br/Rxo7FKkaAdNXgFoCEdAnDXprgwXZXV9lChoBkdAbyva4c3l0mgHTYkBaAhHQJw2OAc1fmd1fZQoaAZHQHGrQQHzH0doB01oAWgIR0CcNl7NSqEOdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 740,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 512,
|
81 |
+
"gamma": 0.9999,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 32,
|
87 |
+
"n_epochs": 5,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f605c787ac1869ca095655f554d3d22fa7fd2d82373f0bb308cfe0a197aeb638
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5c8eecac73f1ab3e7b73770f7ab2f003e298cb729be05701562060e71e609b6
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (158 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 257.50928789999995, "std_reward": 19.10673815205282, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-07T04:42:07.075258"}
|