pierreguillou commited on
Commit
339b1e7
1 Parent(s): 8384d84

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -9
README.md CHANGED
@@ -1,41 +1,131 @@
1
  ---
2
- license: cc-by-nc-sa-4.0
 
 
 
 
 
 
3
  tags:
 
 
4
  - generated_from_trainer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
  model-index:
11
- - name: layout-xlm-base-finetuned-DocLayNet-base_lines_ml384-v1
12
- results: []
 
 
 
 
 
 
 
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
  should probably proofread and complete it, then remove this comment. -->
17
 
18
- # layout-xlm-base-finetuned-DocLayNet-base_lines_ml384-v1
19
 
20
- This model is a fine-tuned version of [microsoft/layoutxlm-base](https://huggingface.co/microsoft/layoutxlm-base) on the None dataset.
21
  It achieves the following results on the evaluation set:
 
22
  - Loss: 0.2364
23
  - Precision: 0.7260
24
  - Recall: 0.7415
25
  - F1: 0.7336
26
  - Accuracy: 0.9373
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  ## Model description
29
 
30
- More information needed
 
 
31
 
32
- ## Intended uses & limitations
33
 
34
- More information needed
35
 
36
  ## Training and evaluation data
37
 
38
- More information needed
39
 
40
  ## Training procedure
41
 
 
1
  ---
2
+ language:
3
+ - multilingual
4
+ - en
5
+ - de
6
+ - fr
7
+ - ja
8
+ license: mit
9
  tags:
10
+ - object-detection
11
+ - vision
12
  - generated_from_trainer
13
+ - DocLayNet
14
+ - COCO
15
+ - PDF
16
+ - IBM
17
+ - Financial-Reports
18
+ - Finance
19
+ - Manuals
20
+ - Scientific-Articles
21
+ - Science
22
+ - Laws
23
+ - Law
24
+ - Regulations
25
+ - Patents
26
+ - Government-Tenders
27
+ - object-detection
28
+ - image-segmentation
29
+ - token-classification
30
+ inference: false
31
+ datasets:
32
+ - pierreguillou/DocLayNet-base
33
  metrics:
34
  - precision
35
  - recall
36
  - f1
37
  - accuracy
38
  model-index:
39
+ - name: layout-xlm-base-finetuned-with-DocLayNet-base-at-linelevel-ml384
40
+ results:
41
+ - task:
42
+ name: Token Classification
43
+ type: token-classification
44
+ metrics:
45
+ - name: f1
46
+ type: f1
47
+ value: 0.7336
48
  ---
49
 
50
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
51
  should probably proofread and complete it, then remove this comment. -->
52
 
53
+ # Document Understanding model (at line level)
54
 
55
+ This model is a fine-tuned version of [microsoft/layoutxlm-base](https://huggingface.co/microsoft/layoutxlm-base) with the [DocLayNet base](https://huggingface.co/datasets/pierreguillou/DocLayNet-base) dataset.
56
  It achieves the following results on the evaluation set:
57
+
58
  - Loss: 0.2364
59
  - Precision: 0.7260
60
  - Recall: 0.7415
61
  - F1: 0.7336
62
  - Accuracy: 0.9373
63
 
64
+ ## References
65
+
66
+ ### Other models
67
+ - LiLT base
68
+ - [Document Understanding model (at paragraph level)](https://huggingface.co/pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512)
69
+ - [Document Understanding model (at line level)](https://huggingface.co/pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-linelevel-ml384)
70
+
71
+ ### Blog posts
72
+
73
+ - Layout XLM base
74
+ - (03/05/2023) [Document AI | Inference APP and fine-tuning notebook for Document Understanding at line level with LayoutXLM base]()
75
+ - LiLT base
76
+ - (02/16/2023) [Document AI | Inference APP and fine-tuning notebook for Document Understanding at paragraph level](https://medium.com/@pierre_guillou/document-ai-inference-app-and-fine-tuning-notebook-for-document-understanding-at-paragraph-level-c18d16e53cf8)
77
+ - (02/14/2023) [Document AI | Inference APP for Document Understanding at line level](https://medium.com/@pierre_guillou/document-ai-inference-app-for-document-understanding-at-line-level-a35bbfa98893)
78
+ - (02/10/2023) [Document AI | Document Understanding model at line level with LiLT, Tesseract and DocLayNet dataset](https://medium.com/@pierre_guillou/document-ai-document-understanding-model-at-line-level-with-lilt-tesseract-and-doclaynet-dataset-347107a643b8)
79
+ - (01/31/2023) [Document AI | DocLayNet image viewer APP](https://medium.com/@pierre_guillou/document-ai-doclaynet-image-viewer-app-3ac54c19956)
80
+ - (01/27/2023) [Document AI | Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)](https://medium.com/@pierre_guillou/document-ai-processing-of-doclaynet-dataset-to-be-used-by-layout-models-of-the-hugging-face-hub-308d8bd81cdb)
81
+
82
+ ### Notebooks (paragraph level)
83
+ - LiLT base
84
+ - [Document AI | Inference APP at paragraph level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/Gradio_inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levelparagraphs_ml512.ipynb)
85
+ - [Document AI | Inference at paragraph level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levelparagraphs_ml512.ipynb)
86
+ - [Document AI | Fine-tune LiLT on DocLayNet base in any language at paragraph level (chunk of 512 tokens with overlap)](https://github.com/piegu/language-models/blob/master/Fine_tune_LiLT_on_DocLayNet_base_in_any_language_at_paragraphlevel_ml_512.ipynb)
87
+
88
+ ### Notebooks (line level)
89
+ - Layout XLM base
90
+ - [Document AI | Inference at line level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/inference_on_LayoutXLM_base_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb)
91
+ - [Document AI | Inference APP at line level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet base dataset)](https://github.com/piegu/language-models/blob/master/Gradio_inference_on_LayoutXLM_base_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb)
92
+ - [Document AI | Fine-tune LayoutXLM base on DocLayNet base in any language at line level (chunk of 384 tokens with overlap)](https://github.com/piegu/language-models/blob/master/Fine_tune_LayoutXLM_base_on_DocLayNet_base_in_any_language_at_linelevel_ml_384.ipynb)
93
+ - LiLT base
94
+ - [Document AI | Inference at line level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb)
95
+ - [Document AI | Inference APP at line level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/Gradio_inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb)
96
+ - [Document AI | Fine-tune LiLT on DocLayNet base in any language at line level (chunk of 384 tokens with overlap)](https://github.com/piegu/language-models/blob/master/Fine_tune_LiLT_on_DocLayNet_base_in_any_language_at_linelevel_ml_384.ipynb)
97
+ - [DocLayNet image viewer APP](https://github.com/piegu/language-models/blob/master/DocLayNet_image_viewer_APP.ipynb)
98
+ - [Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)](processing_DocLayNet_dataset_to_be_used_by_layout_models_of_HF_hub.ipynb)
99
+
100
+ ### APP
101
+
102
+ You can test this model with this APP in Hugging Face Spaces: [Inference APP for Document Understanding at line level (v2)](https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-linelevel-v2).
103
+
104
+ ![Inference APP for Document Understanding at line level (v2)](https://huggingface.co/pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-linelevel-ml384/resolve/main/app_layoutXLM_base_document_understanding_AI.png)
105
+
106
+ ### DocLayNet dataset
107
+
108
+ [DocLayNet dataset](https://github.com/DS4SD/DocLayNet) (IBM) provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories.
109
+
110
+ Until today, the dataset can be downloaded through direct links or as a dataset from Hugging Face datasets:
111
+ - direct links: [doclaynet_core.zip](https://codait-cos-dax.s3.us.cloud-object-storage.appdomain.cloud/dax-doclaynet/1.0.0/DocLayNet_core.zip) (28 GiB), [doclaynet_extra.zip](https://codait-cos-dax.s3.us.cloud-object-storage.appdomain.cloud/dax-doclaynet/1.0.0/DocLayNet_extra.zip) (7.5 GiB)
112
+ - Hugging Face dataset library: [dataset DocLayNet](https://huggingface.co/datasets/ds4sd/DocLayNet)
113
+
114
+ Paper: [DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis](https://arxiv.org/abs/2206.01062) (06/02/2022)
115
+
116
  ## Model description
117
 
118
+ The model was finetuned at **line level on chunk of 384 tokens with overlap of 128 tokens**. Thus, the model was trained with all layout and text data of all pages of the dataset.
119
+
120
+ At inference time, a calculation of best probabilities give the label to each line bounding boxes.
121
 
122
+ ## Inference
123
 
124
+ See notebook: [Document AI | Inference at line level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/inference_on_LayoutXLM_base_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb)
125
 
126
  ## Training and evaluation data
127
 
128
+ See notebook: [Document AI | Fine-tune LayoutXLM base on DocLayNet base in any language at line level (chunk of 384 tokens with overlap)](https://github.com/piegu/language-models/blob/master/Fine_tune_LayoutXLM_base_on_DocLayNet_base_in_any_language_at_linelevel_ml_384.ipynb)
129
 
130
  ## Training procedure
131