File size: 15,829 Bytes
3e240d7
a1838db
 
 
 
 
 
 
3e240d7
a1838db
 
3e240d7
a1838db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e240d7
 
 
 
 
 
a1838db
 
 
 
 
 
 
 
 
786ba61
 
dd2413e
09f2784
3e240d7
9a85aaa
3e240d7
a1838db
3e240d7
a1838db
3e240d7
 
 
 
786ba61
fc2d3ca
786ba61
 
 
bc12932
 
 
 
 
 
 
 
 
 
 
 
 
3ac173e
79225e8
075d0b9
 
3ac173e
a1838db
 
 
 
 
1fb58a8
a1838db
 
 
 
 
 
 
 
 
 
 
39a0915
 
 
a1838db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e1e1ce
a1838db
 
 
 
 
 
 
 
 
 
 
 
 
3e240d7
 
a1838db
 
 
3e240d7
a1838db
3e240d7
a1838db
3e240d7
 
 
a1838db
3e240d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a85aaa
 
 
474e16b
5e15c86
 
474e16b
5e15c86
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
language:
- multilingual
- en
- de
- fr
- ja
license: mit
tags:
- object-detection
- vision
- generated_from_trainer
- DocLayNet
- LayoutXLM
- COCO
- PDF
- IBM
- Financial-Reports
- Finance
- Manuals
- Scientific-Articles
- Science
- Laws
- Law
- Regulations
- Patents
- Government-Tenders
- object-detection
- image-segmentation
- token-classification
inference: false
datasets:
- pierreguillou/DocLayNet-base
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512
  results:
  - task:
      name: Token Classification
      type: token-classification
    metrics:
    - name: f1
      type: f1
      value: 0.7739
    - name: accuracy
      type: accuracy
      value: 0.9693
---

# Document Understanding model (finetuned LayoutXLM base at paragraph level on DocLayNet base)

This model is a fine-tuned version of [microsoft/layoutxlm-base](https://huggingface.co/microsoft/layoutxlm-base)  with the [DocLayNet base](https://huggingface.co/datasets/pierreguillou/DocLayNet-base) dataset.
It achieves the following results on the evaluation set:

- Loss: 0.1796
- Precision: 0.8062
- Recall: 0.7441
- F1: 0.7739
- Token Accuracy: 0.9693
- Paragraph Accuracy: 0.8655

## Accuracy at paragraph level

- Paragraph Accuracy: 86.55%
- Accuracy by label
  - Caption: 63.76%
  - Footnote: 31.91%
  - Formula: 95.33%
  - List-item: 79.31%
  - Page-footer: 99.51%
  - Page-header: 88.75%
  - Picture: 90.91%
  - Section-header: 83.16%
  - Table: 68.25%
  - Text: 91.37%
  - Title: 50.0%

![Paragraphs labels vs accuracy (%) of the dataset DocLayNet base of test (model: LayoutXLM base finetuned on DocLayNet base))](https://huggingface.co/pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512/resolve/main/docs/paragraphs_labels_accuracy_DocLayNet_base_test_LayoutXLM_base_paragraph_level_512.png)

![Confusion matrix of the labeled blocks of the dataset DocLayNet base of test (model: LayoutXLM base finetuned on DocLayNet base)](https://huggingface.co/pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512/resolve/main/docs/confusion_matrix_labeled_paragraphs_DocLayNet_base_test_LayoutXLM_base_paragraph_level_512.png)

## References

### Blog posts

- Layout XLM base
    - (03/31/2023) [Document AI | Inference APP and fine-tuning notebook for Document Understanding at paragraph level with LayoutXLM base](https://medium.com/@pierre_guillou/document-ai-inference-app-and-fine-tuning-notebook-for-document-understanding-at-paragraph-level-3507af80573d)
    - (03/25/2023) [Document AI | APP to compare the Document Understanding LiLT and LayoutXLM (base) models at line level](https://medium.com/@pierre_guillou/document-ai-app-to-compare-the-document-understanding-lilt-and-layoutxlm-base-models-at-line-1c53eb481a15)
    - (03/05/2023) [Document AI | Inference APP and fine-tuning notebook for Document Understanding at line level with LayoutXLM base](https://medium.com/@pierre_guillou/document-ai-inference-app-and-fine-tuning-notebook-for-document-understanding-at-line-level-with-b08fdca5f4dc)
- LiLT base
      - (02/16/2023) [Document AI | Inference APP and fine-tuning notebook for Document Understanding at paragraph level](https://medium.com/@pierre_guillou/document-ai-inference-app-and-fine-tuning-notebook-for-document-understanding-at-paragraph-level-c18d16e53cf8)
      - (02/14/2023) [Document AI | Inference APP for Document Understanding at line level](https://medium.com/@pierre_guillou/document-ai-inference-app-for-document-understanding-at-line-level-a35bbfa98893)
      - (02/10/2023) [Document AI | Document Understanding model at line level with LiLT, Tesseract and DocLayNet dataset](https://medium.com/@pierre_guillou/document-ai-document-understanding-model-at-line-level-with-lilt-tesseract-and-doclaynet-dataset-347107a643b8)
      - (01/31/2023) [Document AI | DocLayNet image viewer APP](https://medium.com/@pierre_guillou/document-ai-doclaynet-image-viewer-app-3ac54c19956)
      - (01/27/2023) [Document AI | Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)](https://medium.com/@pierre_guillou/document-ai-processing-of-doclaynet-dataset-to-be-used-by-layout-models-of-the-hugging-face-hub-308d8bd81cdb)

### Notebooks (paragraph level)
- Layout XLM base
    - [Document AI | Inference at paragraph level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/inference_on_LayoutXLM_base_model_finetuned_on_DocLayNet_base_in_any_language_at_levelparagraphs_ml512.ipynb)
    - [Document AI | Inference APP at paragraph level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet base dataset)](https://github.com/piegu/language-models/blob/master/Gradio_inference_on_LayoutXLM_base_model_finetuned_on_DocLayNet_base_in_any_language_at_levelparagraphs_ml512.ipynb)
    - [Document AI | Fine-tune LayoutXLM base on DocLayNet base in any language at paragraph level (chunk of 512 tokens with overlap)](https://github.com/piegu/language-models/blob/master/Fine_tune_LayoutXLM_base_on_DocLayNet_base_in_any_language_at_paragraphlevel_ml_512.ipynb)
- LiLT base
    - [Document AI | Inference APP at paragraph level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/Gradio_inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levelparagraphs_ml512.ipynb)
    - [Document AI | Inference at paragraph level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levelparagraphs_ml512.ipynb)
    - [Document AI | Fine-tune LiLT on DocLayNet base in any language at paragraph level (chunk of 512 tokens with overlap)](https://github.com/piegu/language-models/blob/master/Fine_tune_LiLT_on_DocLayNet_base_in_any_language_at_paragraphlevel_ml_512.ipynb)

### Notebooks (line level)
- Layout XLM base
    - [Document AI | Inference APP at line level with 2 Document Understanding models (LiLT and LayoutXLM base fine-tuned on DocLayNet base dataset)](https://github.com/piegu/language-models/blob/master/Gradio_inference_on_LiLT_&_LayoutXLM_base_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb)
    - [Document AI | Inference at line level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/inference_on_LayoutXLM_base_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb)
    - [Document AI | Inference APP at line level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet base dataset)](https://github.com/piegu/language-models/blob/master/Gradio_inference_on_LayoutXLM_base_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb)
    - [Document AI | Fine-tune LayoutXLM base on DocLayNet base in any language at line level (chunk of 384 tokens with overlap)](https://github.com/piegu/language-models/blob/master/Fine_tune_LayoutXLM_base_on_DocLayNet_base_in_any_language_at_linelevel_ml_384.ipynb)
- LiLT base
    - [Document AI | Inference at line level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb)
    - [Document AI | Inference APP at line level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)](https://github.com/piegu/language-models/blob/master/Gradio_inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb)
    - [Document AI | Fine-tune LiLT on DocLayNet base in any language at line level (chunk of 384 tokens with overlap)](https://github.com/piegu/language-models/blob/master/Fine_tune_LiLT_on_DocLayNet_base_in_any_language_at_linelevel_ml_384.ipynb)
    - [DocLayNet image viewer APP](https://github.com/piegu/language-models/blob/master/DocLayNet_image_viewer_APP.ipynb)
    - [Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)](processing_DocLayNet_dataset_to_be_used_by_layout_models_of_HF_hub.ipynb)

## APP

You can test this model with this APP in Hugging Face Spaces: [Inference APP for Document Understanding at paragraph level (v2)](https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-paragraphlevel-v2).

![Inference APP for Document Understanding at paragraph level (v2)](https://huggingface.co/pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512/resolve/main/docs/Inference-APP-Document-Understanding-at-paragraphlevel-v2.png)

You can run as well the corresponding notebook: [Document AI | Inference APP at paragraph level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)]()

## DocLayNet dataset

[DocLayNet dataset](https://github.com/DS4SD/DocLayNet) (IBM) provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories. 

Until today, the dataset can be downloaded through direct links or as a dataset from Hugging Face datasets:
- direct links: [doclaynet_core.zip](https://codait-cos-dax.s3.us.cloud-object-storage.appdomain.cloud/dax-doclaynet/1.0.0/DocLayNet_core.zip) (28 GiB), [doclaynet_extra.zip](https://codait-cos-dax.s3.us.cloud-object-storage.appdomain.cloud/dax-doclaynet/1.0.0/DocLayNet_extra.zip) (7.5 GiB)
- Hugging Face dataset library: [dataset DocLayNet](https://huggingface.co/datasets/ds4sd/DocLayNet)

Paper: [DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis](https://arxiv.org/abs/2206.01062) (06/02/2022)

## Model description

The model was finetuned at **paragraph level on chunk of 512 tokens with overlap of 128 tokens**. Thus, the model was trained with all layout and text data of all pages of the dataset.

At inference time, a calculation of best probabilities give the label to each paragraph bounding boxes.

## Inference

See notebook: [Document AI | Inference at paragraph level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)]()

## Training and evaluation data

See notebook: [Document AI | Fine-tune LayoutXLM base on DocLayNet base in any language at paragraph level (chunk of 512 tokens with overlap)]()

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Accuracy | F1     | Validation Loss | Precision | Recall |
|:-------------:|:-----:|:----:|:--------:|:------:|:---------------:|:---------:|:------:|
| No log        | 0.11  | 200  | 0.8842   | 0.1066 | 0.4428          | 0.1154    | 0.0991 |
| No log        | 0.21  | 400  | 0.9243   | 0.4440 | 0.3040          | 0.4548    | 0.4336 |
| 0.7241        | 0.32  | 600  | 0.9359   | 0.5544 | 0.2265          | 0.5330    | 0.5775 |
| 0.7241        | 0.43  | 800  | 0.9479   | 0.6015 | 0.2140          | 0.6013    | 0.6017 |
| 0.2343        | 0.53  | 1000 | 0.9402   | 0.6132 | 0.2852          | 0.6642    | 0.5695 |
| 0.2343        | 0.64  | 1200 | 0.9540   | 0.6604 | 0.1694          | 0.6565    | 0.6644 |
| 0.2343        | 0.75  | 1400 | 0.9354   | 0.6198 | 0.2308          | 0.5119    | 0.7854 |
| 0.1913        | 0.85  | 1600 | 0.9594   | 0.6590 | 0.1601          | 0.7190    | 0.6082 |
| 0.1913        | 0.96  | 1800 | 0.9541   | 0.6597 | 0.1671          | 0.5790    | 0.7664 |
| 0.1346        | 1.07  | 2000 | 0.9612   | 0.6986 | 0.1580          | 0.6838    | 0.7140 |
| 0.1346        | 1.17  | 2200 | 0.9597   | 0.6897 | 0.1423          | 0.6618    | 0.7200 |
| 0.1346        | 1.28  | 2400 | 0.9663   | 0.6980 | 0.1580          | 0.7490    | 0.6535 |
| 0.098         | 1.39  | 2600 | 0.9616   | 0.6800 | 0.1394          | 0.7044    | 0.6573 |
| 0.098         | 1.49  | 2800 | 0.9686   | 0.7251 | 0.1756          | 0.6893    | 0.7649 |
| 0.0999        | 1.6   | 3000 | 0.9636   | 0.6985 | 0.1542          | 0.7127    | 0.6848 |
| 0.0999        | 1.71  | 3200 | 0.9670   | 0.7097 | 0.1187          | 0.7538    | 0.6705 |
| 0.0999        | 1.81  | 3400 | 0.9585   | 0.7427 | 0.1793          | 0.7602    | 0.7260 |
| 0.0972        | 1.92  | 3600 | 0.9621   | 0.7189 | 0.1836          | 0.7576    | 0.6839 |
| 0.0972        | 2.03  | 3800 | 0.9642   | 0.7189 | 0.1465          | 0.7388    | 0.6999 |
| 0.0662        | 2.13  | 4000 | 0.9691   | 0.7450 | 0.1409          | 0.7615    | 0.7292 |
| 0.0662        | 2.24  | 4200 | 0.9615   | 0.7432 | 0.1720          | 0.7435    | 0.7429 |
| 0.0662        | 2.35  | 4400 | 0.9667   | 0.7338 | 0.1440          | 0.7469    | 0.7212 |
| 0.0581        | 2.45  | 4600 | 0.9657   | 0.7135 | 0.1928          | 0.7458    | 0.6839 |
| 0.0581        | 2.56  | 4800 | 0.9692   | 0.7378 | 0.1645          | 0.7467    | 0.7292 |
| 0.0538        | 2.67  | 5000 | 0.9656   | 0.7619 | 0.1517          | 0.7700    | 0.7541 |
| 0.0538        | 2.77  | 5200 | 0.9684   | 0.7728 | 0.1676          | 0.8227    | 0.7286 |
| 0.0538        | 2.88  | 5400 | 0.9725   | 0.7608 | 0.1277          | 0.7865    | 0.7367 |
| 0.0432        | 2.99  | 5600 | 0.9693   | 0.7784 | 0.1532          | 0.7891    | 0.7681 |
| 0.0432        | 3.09  | 5800 | 0.9692   | 0.7783 | 0.1701          | 0.8067    | 0.7519 |
| 0.0272        | 3.2   | 6000 | 0.9732   | 0.7798 | 0.1159          | 0.8072    | 0.7542 |
| 0.0272        | 3.3   | 6200 | 0.9720   | 0.7797 | 0.1835          | 0.7926    | 0.7672 |
| 0.0272        | 3.41  | 6400 | 0.9730   | 0.7894 | 0.1481          | 0.8183    | 0.7624 |
| 0.0274        | 3.52  | 6600 | 0.9686   | 0.7655 | 0.1552          | 0.7958    | 0.7373 |
| 0.0274        | 3.62  | 6800 | 0.9698   | 0.7724 | 0.1523          | 0.8068    | 0.7407 |
| 0.0246        | 3.73  | 7000 | 0.9691   | 0.7720 | 0.1673          | 0.7960    | 0.7493 |
| 0.0246        | 3.84  | 7200 | 0.9688   | 0.7695 | 0.1333          | 0.7986    | 0.7424 |
| 0.0246        | 3.94  | 7400 | 0.1796   | 0.8062 | 0.7441          | 0.7739    | 0.9693 |

### Framework versions

- Transformers 4.27.3
- Pytorch 1.10.0+cu111
- Datasets 2.10.1
- Tokenizers 0.13.2

## Other models
- Line level
  - [Document Understanding model (finetuned LiLT base at line level on DocLayNet base)](https://huggingface.co/pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-linelevel-ml384) (accuracy | tokens:  85.84% - lines: 91.97%)
  - [Document Understanding model (finetuned LayoutXLM base at line level on DocLayNet base)](https://huggingface.co/pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-linelevel-ml384) (accuracy | tokens:  93.73% - lines: ...)
- Paragraph level
  - [Document Understanding model (finetuned LiLT base at paragraph level on DocLayNet base)](https://huggingface.co/pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512) (accuracy | tokens: 86.34% - paragraphs: 68.15%)
  - [Document Understanding model (finetuned LayoutXLM base at paragraph level on DocLayNet base)](https://huggingface.co/pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512) (accuracy | tokens:  96.93% - paragraphs: 86.55%)