--- language: - pt tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: checkpoints results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br metrics: - name: F1 type: f1 value: 0.9082022949426265 - name: Precision type: precision value: 0.8975220495590088 - name: Recall type: recall value: 0.9191397849462366 - name: Accuracy type: accuracy value: 0.9808310603867311 - name: Loss type: loss value: 0.1228889599442482 - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: train metrics: - name: Accuracy type: accuracy value: 0.9975707336729701 verified: true - name: Precision type: precision value: 0.9977993445529819 verified: true - name: Recall type: recall value: 0.9985075620027187 verified: true - name: F1 type: f1 value: 0.998153327652889 verified: true - name: loss type: loss value: 0.008970754221081734 verified: true widget: - text: "Ao Instituto M\xE9dico Legal da jurisdi\xE7\xE3o do acidente ou da resid\xEA\ ncia cumpre fornecer, no prazo de 90 dias, laudo \xE0 v\xEDtima (art. 5, \xA7\ \ 5, Lei n. 6.194/74 de 19 de dezembro de 1974), fun\xE7\xE3o t\xE9cnica que\ \ pode ser suprida por prova pericial realizada por ordem do ju\xEDzo da causa,\ \ ou por prova t\xE9cnica realizada no \xE2mbito administrativo que se mostre\ \ coerente com os demais elementos de prova constante dos autos." - text: "Acrescento que n\xE3o h\xE1 de se falar em viola\xE7\xE3o do artigo 114,\ \ \xA7 3\xBA, da Constitui\xE7\xE3o Federal, posto que referido dispositivo revela-se\ \ impertinente, tratando da possibilidade de ajuizamento de diss\xEDdio coletivo\ \ pelo Minist\xE9rio P\xFAblico do Trabalho nos casos de greve em atividade essencial." - text: "Todavia, entendo que extrair da aludida norma o sentido expresso na reda\xE7\ \xE3o acima implica desconstruir o significado do texto constitucional, o que\ \ \xE9 absolutamente vedado ao int\xE9rprete. Nesse sentido, cito Dimitri Dimoulis:\ \ \u2018(...) ao int\xE9rprete n\xE3o \xE9 dado escolher significados que n\xE3\ o estejam abarcados pela moldura da norma. Interpretar n\xE3o pode significar\ \ violentar a norma.\u2019 (Positivismo Jur\xEDdico. S\xE3o Paulo: M\xE9todo,\ \ 2006, p. 220).59. Dessa forma, deve-se tomar o sentido etimol\xF3gico como limite\ \ da atividade interpretativa, a qual n\xE3o pode superado, a ponto de destruir\ \ a pr\xF3pria norma a ser interpretada. Ou, como diz Konrad Hesse, \u2018o texto\ \ da norma \xE9 o limite insuper\xE1vel da atividade interpretativa.\u2019 (Elementos\ \ de Direito Constitucional da Rep\xFAblica Federal da Alemanha, Porto Alegre:\ \ Sergio Antonio Fabris, 2003, p. 71)." --- ## (BERT large) NER model in the legal domain in Portuguese (LeNER-Br) **ner-bert-large-portuguese-cased-lenerbr** is a NER model (token classification) in the legal domain in Portuguese that was finetuned on 20/12/2021 in Google Colab from the model [pierreguillou/bert-large-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-large-cased-pt-lenerbr) on the dataset [LeNER_br](https://huggingface.co/datasets/lener_br) by using a NER objective. Due to the small size of the finetuning dataset, the model overfitted before to reach the end of training. Here are the overall final metrics on the validation dataset (*note: see the paragraph "Validation metrics by Named Entity" to get detailed metrics*): - **f1**: 0.9082022949426265 - **precision**: 0.8975220495590088 - **recall**: 0.9191397849462366 - **accuracy**: 0.9808310603867311 - **loss**: 0.1228889599442482 Check as well the [base version of this model](https://huggingface.co/pierreguillou/ner-bert-base-cased-pt-lenerbr) with a f1 of 0.893. **Note**: the model [pierreguillou/bert-large-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-large-cased-pt-lenerbr) is a language model that was created through the finetuning of the model [BERTimbau large](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the dataset [LeNER-Br language modeling](https://huggingface.co/datasets/pierreguillou/lener_br_finetuning_language_model) by using a MASK objective. This first specialization of the language model before finetuning on the NER task allows to get a better NER model. ## Blog post [NLP | Modelos e Web App para Reconhecimento de Entidade Nomeada (NER) no domínio jurídico brasileiro](https://medium.com/@pierre_guillou/nlp-modelos-e-web-app-para-reconhecimento-de-entidade-nomeada-ner-no-dom%C3%ADnio-jur%C3%ADdico-b658db55edfb) (29/12/2021) ## Widget & App You can test this model into the widget of this page. Use as well the [NER App](https://huggingface.co/spaces/pierreguillou/ner-bert-pt-lenerbr) that allows comparing the 2 BERT models (base and large) fitted in the NER task with the legal LeNER-Br dataset. ## Using the model for inference in production ```` # install pytorch: check https://pytorch.org/ # !pip install transformers from transformers import AutoModelForTokenClassification, AutoTokenizer import torch # parameters model_name = "pierreguillou/ner-bert-large-cased-pt-lenerbr" model = AutoModelForTokenClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) input_text = "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial." # tokenization inputs = tokenizer(input_text, max_length=512, truncation=True, return_tensors="pt") tokens = inputs.tokens() # get predictions outputs = model(**inputs).logits predictions = torch.argmax(outputs, dim=2) # print predictions for token, prediction in zip(tokens, predictions[0].numpy()): print((token, model.config.id2label[prediction])) ```` You can use pipeline, too. However, it seems to have an issue regarding to the max_length of the input sequence. ```` !pip install transformers import transformers from transformers import pipeline model_name = "pierreguillou/ner-bert-large-cased-pt-lenerbr" ner = pipeline( "ner", model=model_name ) ner(input_text) ```` ## Training procedure ### Notebook The notebook of finetuning ([HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb](https://github.com/piegu/language-models/blob/master/HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb)) is in github. ### Hyperparameters # batch, learning rate... - per_device_batch_size = 2 - gradient_accumulation_steps = 2 - learning_rate = 2e-5 - num_train_epochs = 10 - weight_decay = 0.01 - optimizer = AdamW - betas = (0.9,0.999) - epsilon = 1e-08 - lr_scheduler_type = linear - seed = 42 # save model & load best model - save_total_limit = 7 - logging_steps = 500 - eval_steps = logging_steps - evaluation_strategy = 'steps' - logging_strategy = 'steps' - save_strategy = 'steps' - save_steps = logging_steps - load_best_model_at_end = True - fp16 = True # get best model through a metric - metric_for_best_model = 'eval_f1' - greater_is_better = True ### Training results ```` Num examples = 7828 Num Epochs = 20 Instantaneous batch size per device = 2 Total train batch size (w. parallel, distributed & accumulation) = 4 Gradient Accumulation steps = 2 Total optimization steps = 39140 Step Training Loss Validation Loss Precision Recall F1 Accuracy 500 0.250000 0.140582 0.760833 0.770323 0.765548 0.963125 1000 0.076200 0.117882 0.829082 0.817849 0.823428 0.966569 1500 0.082400 0.150047 0.679610 0.914624 0.779795 0.957213 2000 0.047500 0.133443 0.817678 0.857419 0.837077 0.969190 2500 0.034200 0.230139 0.895672 0.845591 0.869912 0.964070 3000 0.033800 0.108022 0.859225 0.887312 0.873043 0.973700 3500 0.030100 0.113467 0.855747 0.885376 0.870310 0.975879 4000 0.029900 0.118619 0.850207 0.884946 0.867229 0.974477 4500 0.022500 0.124327 0.841048 0.890968 0.865288 0.975041 5000 0.020200 0.129294 0.801538 0.918925 0.856227 0.968077 5500 0.019700 0.128344 0.814222 0.908602 0.858827 0.969250 6000 0.024600 0.182563 0.908087 0.866882 0.887006 0.968565 6500 0.012600 0.159217 0.829883 0.913763 0.869806 0.969357 7000 0.020600 0.183726 0.854557 0.893333 0.873515 0.966447 7500 0.014400 0.141395 0.777716 0.905161 0.836613 0.966828 8000 0.013400 0.139378 0.873042 0.899140 0.885899 0.975772 8500 0.014700 0.142521 0.864152 0.901505 0.882433 0.976366 9000 0.010900 0.122889 0.897522 0.919140 0.908202 0.980831 9500 0.013500 0.143407 0.816580 0.906667 0.859268 0.973395 10000 0.010400 0.144946 0.835608 0.908387 0.870479 0.974629 10500 0.007800 0.143086 0.847587 0.910108 0.877735 0.975985 11000 0.008200 0.156379 0.873778 0.884301 0.879008 0.976321 11500 0.008200 0.133356 0.901193 0.910108 0.905628 0.980328 12000 0.006900 0.133476 0.892202 0.920215 0.905992 0.980572 12500 0.006900 0.129991 0.890159 0.904516 0.897280 0.978683 ```` ### Validation metrics by Named Entity ```` {'JURISPRUDENCIA': {'f1': 0.8135593220338984, 'number': 657, 'precision': 0.865979381443299, 'recall': 0.7671232876712328}, 'LEGISLACAO': {'f1': 0.8888888888888888, 'number': 571, 'precision': 0.8952042628774423, 'recall': 0.882661996497373}, 'LOCAL': {'f1': 0.850467289719626, 'number': 194, 'precision': 0.7777777777777778, 'recall': 0.9381443298969072}, 'ORGANIZACAO': {'f1': 0.8740635033892258, 'number': 1340, 'precision': 0.8373205741626795, 'recall': 0.914179104477612}, 'PESSOA': {'f1': 0.9836677554829678, 'number': 1072, 'precision': 0.9841269841269841, 'recall': 0.9832089552238806}, 'TEMPO': {'f1': 0.9669669669669669, 'number': 816, 'precision': 0.9481743227326266, 'recall': 0.9865196078431373}, 'overall_accuracy': 0.9808310603867311, 'overall_f1': 0.9082022949426265, 'overall_precision': 0.8975220495590088, 'overall_recall': 0.9191397849462366} ````