File size: 3,072 Bytes
ad7996e b9f5d99 ad7996e 134d808 ad7996e fa86ba0 ad7996e 134d808 ad7996e fa86ba0 a33134e ad7996e ee91324 ad7996e a33134e dbbe639 7f2ed75 dbbe639 ad7996e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
tags:
- generated_from_trainer
- whisper-event
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
- wer_norm
model-index:
- name: openai/whisper-medium
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: fr
split: test
args: fr
metrics:
- name: Wer
type: wer
value: 11.1406
- name: Wer (without normalization)
type: wer_without_norm
value: 15.89689189275029
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# French Medium Whisper
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2664
- Wer (without normalization): 15.8969
- Wer (with normalization): **11.1406**
## New SOTA
The Normalized WER in the [OpenAI Whisper article](https://cdn.openai.com/papers/whisper.pdf) with the [Common Voice 9.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) test dataset is 16.0.
As this test dataset is similar to the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) test dataset used to evaluate our model (WER and WER Norm), it means that **our French Medium Whisper is better than the [Medium Whisper](https://huggingface.co/openai/whisper-medium) model at transcribing audios French in text**.
![OpenAI results with Whisper Medium and Test dataset of Commons Voice 9.0](https://huggingface.co/pierreguillou/whisper-medium-french/resolve/main/whisper_medium_french_wer_commonvoice9.png)
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Wer Norm |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|
| 0.2695 | 0.2 | 1000 | 0.3080 | 17.8083 | 12.9791 |
| 0.2099 | 0.4 | 2000 | 0.2981 | 17.4792 | 12.4242 |
| 0.1978 | 0.6 | 3000 | 0.2864 | 16.7767 | 12.0913 |
| 0.1455 | 0.8 | 4000 | 0.2752 | 16.4597 | 11.8966 |
| 0.1712 | 1.0 | 5000 | 0.2664 | 15.8969 | 11.1406 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|