marcus-daily
commited on
Commit
·
849c530
1
Parent(s):
01d323e
Model card fixes
Browse files
README.md
CHANGED
@@ -39,6 +39,12 @@ Compared with v1 it is:
|
|
39 |
* **6 × smaller** – ≈ 360 MB vs. 2.3 GB.
|
40 |
* **3 × faster** – ≈ 12 ms to analyse 8 s of audio on an NVIDIA L40S.
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
## Intended use & task
|
43 |
|
44 |
| Use‑case | Why this model helps |
|
@@ -60,10 +66,15 @@ The `wav2vec2 + linear` configuration out‑performed LSTM and deeper transfor
|
|
60 |
|
61 |
## Training data
|
62 |
|
63 |
-
| Source
|
64 |
-
|
65 |
-
| `human_5_all`
|
66 |
-
| `
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
* Sentences were cleaned with Gemini 2.5 Flash to remove ungrammatical, controversial or written‑only text.
|
69 |
* Filler‑word lists per language (e.g., “um”, “えーと”) built with Claude & GPT‑o3 and injected near sentence ends to teach the model about interrupted speech.
|
@@ -74,14 +85,14 @@ All audio/text pairs are released on the [pipecat‑ai/datasets](https://hugging
|
|
74 |
|
75 |
### Accuracy on unseen synthetic test set (50 % complete / 50 % incomplete)
|
76 |
| Lang | Acc % | Lang | Acc % |
|
77 |
-
|
78 |
-
| EN
|
79 |
-
| FR
|
80 |
-
| ES
|
81 |
-
| DE
|
82 |
-
| NL
|
83 |
-
| RU
|
84 |
-
| ZH
|
85 |
|
86 |
*Human English benchmark (`human_5_all`) : **99 %** accuracy.*
|
87 |
|
@@ -92,7 +103,7 @@ All audio/text pairs are released on the [pipecat‑ai/datasets](https://hugging
|
|
92 |
| NVIDIA L40S | 12 ms |
|
93 |
| NVIDIA A100 | 19 ms |
|
94 |
| NVIDIA T4 (AWS g4dn.xlarge) | 75 ms |
|
95 |
-
| 16‑core x86 CPU (Modal)
|
96 |
|
97 |
[oai_citation:7‡Daily](https://www.daily.co/blog/smart-turn-v2-faster-inference-and-13-new-languages-for-voice-ai/)
|
98 |
|
@@ -114,4 +125,5 @@ if sr != 16_000:
|
|
114 |
|
115 |
result = pipe(speech, top_k=None)[0]
|
116 |
print(f"Completed turn? {result['label']} Prob: {result['score']:.3f}")
|
117 |
-
# label == 'complete' → user has finished speaking
|
|
|
|
39 |
* **6 × smaller** – ≈ 360 MB vs. 2.3 GB.
|
40 |
* **3 × faster** – ≈ 12 ms to analyse 8 s of audio on an NVIDIA L40S.
|
41 |
|
42 |
+
## Links
|
43 |
+
|
44 |
+
* [Blog post: Smart Turn v2](https://www.daily.co/blog/smart-turn-v2-faster-inference-and-13-new-languages-for-voice-ai/)
|
45 |
+
* [GitHub repo](https://github.com/pipecat-ai/smart-turn) with training and inference code
|
46 |
+
|
47 |
+
|
48 |
## Intended use & task
|
49 |
|
50 |
| Use‑case | Why this model helps |
|
|
|
66 |
|
67 |
## Training data
|
68 |
|
69 |
+
| Source | Type | Languages |
|
70 |
+
|-------------------------|-------------------------------|-----------|
|
71 |
+
| `human_5_all` | Human‑recorded | EN |
|
72 |
+
| `human_convcollector_1` | Human‑recorded | EN |
|
73 |
+
| `rime_2` | Synthetic (Rime) | EN |
|
74 |
+
| `orpheus_midfiller_1` | Synthetic (Orpheus) | EN |
|
75 |
+
| `orpheus_grammar_1` | Synthetic (Orpheus) | EN |
|
76 |
+
| `orpheus_endfiller_1` | Synthetic (Orpheus) | EN |
|
77 |
+
| `chirp3_1` | Synthetic (Google Chirp3 TTS) | 14 langs |
|
78 |
|
79 |
* Sentences were cleaned with Gemini 2.5 Flash to remove ungrammatical, controversial or written‑only text.
|
80 |
* Filler‑word lists per language (e.g., “um”, “えーと”) built with Claude & GPT‑o3 and injected near sentence ends to teach the model about interrupted speech.
|
|
|
85 |
|
86 |
### Accuracy on unseen synthetic test set (50 % complete / 50 % incomplete)
|
87 |
| Lang | Acc % | Lang | Acc % |
|
88 |
+
|------|-------|------|-------|
|
89 |
+
| EN | 94.3 | IT | 94.4 |
|
90 |
+
| FR | 95.5 | KO | 95.5 |
|
91 |
+
| ES | 92.1 | PT | 95.5 |
|
92 |
+
| DE | 95.8 | TR | 96.8 |
|
93 |
+
| NL | 96.7 | PL | 94.6 |
|
94 |
+
| RU | 93.0 | HI | 91.2 |
|
95 |
+
| ZH | 87.2 | – | – |
|
96 |
|
97 |
*Human English benchmark (`human_5_all`) : **99 %** accuracy.*
|
98 |
|
|
|
103 |
| NVIDIA L40S | 12 ms |
|
104 |
| NVIDIA A100 | 19 ms |
|
105 |
| NVIDIA T4 (AWS g4dn.xlarge) | 75 ms |
|
106 |
+
| 16‑core x86\_64 CPU (Modal) | 410 ms |
|
107 |
|
108 |
[oai_citation:7‡Daily](https://www.daily.co/blog/smart-turn-v2-faster-inference-and-13-new-languages-for-voice-ai/)
|
109 |
|
|
|
125 |
|
126 |
result = pipe(speech, top_k=None)[0]
|
127 |
print(f"Completed turn? {result['label']} Prob: {result['score']:.3f}")
|
128 |
+
# label == 'complete' → user has finished speaking
|
129 |
+
```
|