marcus-daily commited on
Commit
849c530
·
1 Parent(s): 01d323e

Model card fixes

Browse files
Files changed (1) hide show
  1. README.md +26 -14
README.md CHANGED
@@ -39,6 +39,12 @@ Compared with v1 it is:
39
  * **6 × smaller** – ≈ 360 MB vs. 2.3 GB.
40
  * **3 × faster** – ≈ 12 ms to analyse 8 s of audio on an NVIDIA L40S.
41
 
 
 
 
 
 
 
42
  ## Intended use & task
43
 
44
  | Use‑case | Why this model helps |
@@ -60,10 +66,15 @@ The `wav2vec2 + linear` configuration out‑performed LSTM and deeper transfor
60
 
61
  ## Training data
62
 
63
- | Source | Type | Split | Languages |
64
- |--------|------|-------|-----------|
65
- | `human_5_all` | Human‑recorded | Train / Dev / Test | EN |
66
- | `chirp3_1` | Synthetic (Google Chirp3 TTS) | Train / Dev / Test | 14 langs |
 
 
 
 
 
67
 
68
  * Sentences were cleaned with Gemini 2.5 Flash to remove ungrammatical, controversial or written‑only text.
69
  * Filler‑word lists per language (e.g., “um”, “えーと”) built with Claude & GPT‑o3 and injected near sentence ends to teach the model about interrupted speech.
@@ -74,14 +85,14 @@ All audio/text pairs are released on the [pipecat‑ai/datasets](https://hugging
74
 
75
  ### Accuracy on unseen synthetic test set (50 % complete / 50 % incomplete)
76
  | Lang | Acc % | Lang | Acc % |
77
- |------|------|------|------|
78
- | EN | 94.3 | IT | 94.4 |
79
- | FR | 95.5 | KO | 95.5 |
80
- | ES | 92.1 | PT | 95.5 |
81
- | DE | 95.8 | TR | 96.8 |
82
- | NL | 96.7 | PL | 94.6 |
83
- | RU | 93.0 | HI | 91.2 |
84
- | ZH | 87.2 | – | |
85
 
86
  *Human English benchmark (`human_5_all`) : **99 %** accuracy.*
87
 
@@ -92,7 +103,7 @@ All audio/text pairs are released on the [pipecat‑ai/datasets](https://hugging
92
  | NVIDIA L40S | 12 ms |
93
  | NVIDIA A100 | 19 ms |
94
  | NVIDIA T4 (AWS g4dn.xlarge) | 75 ms |
95
- | 16‑core x86 CPU (Modal) | 410 ms |
96
 
97
  [oai_citation:7‡Daily](https://www.daily.co/blog/smart-turn-v2-faster-inference-and-13-new-languages-for-voice-ai/)
98
 
@@ -114,4 +125,5 @@ if sr != 16_000:
114
 
115
  result = pipe(speech, top_k=None)[0]
116
  print(f"Completed turn? {result['label']} Prob: {result['score']:.3f}")
117
- # label == 'complete' → user has finished speaking
 
 
39
  * **6 × smaller** – ≈ 360 MB vs. 2.3 GB.
40
  * **3 × faster** – ≈ 12 ms to analyse 8 s of audio on an NVIDIA L40S.
41
 
42
+ ## Links
43
+
44
+ * [Blog post: Smart Turn v2](https://www.daily.co/blog/smart-turn-v2-faster-inference-and-13-new-languages-for-voice-ai/)
45
+ * [GitHub repo](https://github.com/pipecat-ai/smart-turn) with training and inference code
46
+
47
+
48
  ## Intended use & task
49
 
50
  | Use‑case | Why this model helps |
 
66
 
67
  ## Training data
68
 
69
+ | Source | Type | Languages |
70
+ |-------------------------|-------------------------------|-----------|
71
+ | `human_5_all` | Human‑recorded | EN |
72
+ | `human_convcollector_1` | Human‑recorded | EN |
73
+ | `rime_2` | Synthetic (Rime) | EN |
74
+ | `orpheus_midfiller_1` | Synthetic (Orpheus) | EN |
75
+ | `orpheus_grammar_1` | Synthetic (Orpheus) | EN |
76
+ | `orpheus_endfiller_1` | Synthetic (Orpheus) | EN |
77
+ | `chirp3_1` | Synthetic (Google Chirp3 TTS) | 14 langs |
78
 
79
  * Sentences were cleaned with Gemini 2.5 Flash to remove ungrammatical, controversial or written‑only text.
80
  * Filler‑word lists per language (e.g., “um”, “えーと”) built with Claude & GPT‑o3 and injected near sentence ends to teach the model about interrupted speech.
 
85
 
86
  ### Accuracy on unseen synthetic test set (50 % complete / 50 % incomplete)
87
  | Lang | Acc % | Lang | Acc % |
88
+ |------|-------|------|-------|
89
+ | EN | 94.3 | IT | 94.4 |
90
+ | FR | 95.5 | KO | 95.5 |
91
+ | ES | 92.1 | PT | 95.5 |
92
+ | DE | 95.8 | TR | 96.8 |
93
+ | NL | 96.7 | PL | 94.6 |
94
+ | RU | 93.0 | HI | 91.2 |
95
+ | ZH | 87.2 | – | |
96
 
97
  *Human English benchmark (`human_5_all`) : **99 %** accuracy.*
98
 
 
103
  | NVIDIA L40S | 12 ms |
104
  | NVIDIA A100 | 19 ms |
105
  | NVIDIA T4 (AWS g4dn.xlarge) | 75 ms |
106
+ | 16‑core x86\_64 CPU (Modal) | 410 ms |
107
 
108
  [oai_citation:7‡Daily](https://www.daily.co/blog/smart-turn-v2-faster-inference-and-13-new-languages-for-voice-ai/)
109
 
 
125
 
126
  result = pipe(speech, top_k=None)[0]
127
  print(f"Completed turn? {result['label']} Prob: {result['score']:.3f}")
128
+ # label == 'complete' → user has finished speaking
129
+ ```