pirchavez commited on
Commit
f4299ed
·
1 Parent(s): 18ace3b

My first model

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -130.75 +/- 14.35
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2471667e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2471667ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2471667f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24715fc050>", "_build": "<function ActorCriticPolicy._build at 0x7f24715fc0e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f24715fc170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24715fc200>", "_predict": "<function ActorCriticPolicy._predict at 0x7f24715fc290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24715fc320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24715fc3b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24715fc440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f247164d660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 229376, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652314301.634911, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObZNz2I26k/vC8QP6SsB78ogD69/NYkvQAAAAAAAAAA+keiPoj3xLxSYuy87u25u0g6B759IuS8AAAAAAAAgD/dCFG+svyZPyFhSr/AFsC+CznNOpYBxr0AAAAAAAAAACa9/T1auoU/NYw9PloE174a5TE9DFyOPQAAAAAAAAAAIM1cvuyH6joQrtI573GRtsU5crw7x/O4AACAPwAAgD+N7uU9PZQ6PB1lhzy0hZA9WumMPKuSRjwAAAAAAAAAAEbjMD4cQ6E/1ISXPjP8cL4lUDk+h7EhvQAAAAAAAAAAdfrXvm8Mxb04Ed+9SrxAvR2Qd734BE49AACAPwAAAABG4H6++MW8POvGcj6+KhI8rQSsvjswjT0AAIA/AACAP03bwj3hWue4GbckvBKmrDqyg5C5Cl2FvAAAAAAAAAAAIH82v1jngb4tZZq7LDQjvYqUBz5d1Aw+AACAPwAAgD9m4tw+pz5JP+W4Ab4Qtci91zioOw66Yb0AAAAAAAAAAJqFfb1cC1W6OsXvPNT28TM7Y9w5lnCfMwAAgD8AAIA/cLzPvvTOl71TG9g8wDmCvvmm5b1q5pK/AACAPwAAgD/mxFK9+vyJPy16Cr6/Yri+PkGXPQgCOrsAAAAAAAAAAODQLz7Xs2e73V/nvQMIyTwchg4+nScCvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU5PgDWk0LkCUhpRSlIwBbJRL3YwBdJRHQHUkXqAz5451fZQoaAZoCWgPQwh3TUhrDMoeQJSGlFKUaBVLhGgWR0B1JOGetjkNdX2UKGgGaAloD0MI/mSMD7PrQ8CUhpRSlGgVS6NoFkdAdSbabWmP53V9lChoBmgJaA9DCFOXjGMkF0XAlIaUUpRoFUt5aBZHQHUnqkl/pdN1fZQoaAZoCWgPQwjkgjP4+w9EwJSGlFKUaBVLimgWR0B1KT0dzXBhdX2UKGgGaAloD0MI1SR4QxopP0CUhpRSlGgVS3toFkdAdSmIKc/dI3V9lChoBmgJaA9DCP5fdeRIhwrAlIaUUpRoFUvGaBZHQHUresHSncd1fZQoaAZoCWgPQwhEpnwIqso4wJSGlFKUaBVLj2gWR0B1LLrHEMspdX2UKGgGaAloD0MImrUUkPbnTMCUhpRSlGgVTUwBaBZHQHUtRWPtD2J1fZQoaAZoCWgPQwid8uhGWCxAwJSGlFKUaBVLwmgWR0B1LXFsHjZMdX2UKGgGaAloD0MIoiqm0k98OkCUhpRSlGgVS8poFkdAdS4pH7P6bnV9lChoBmgJaA9DCKKakqzD8QlAlIaUUpRoFUv5aBZHQHUyTJ2dNFl1fZQoaAZoCWgPQwhau+1Cc1kzwJSGlFKUaBVLsGgWR0B1M8lruYx+dX2UKGgGaAloD0MIe4UF9wPOO0CUhpRSlGgVS79oFkdAdTO7I1cdHXV9lChoBmgJaA9DCOoJSzygeEFAlIaUUpRoFUu4aBZHQHUz7VjI7vJ1fZQoaAZoCWgPQwh+kGXBxN9DwJSGlFKUaBVLYGgWR0B1NH2exwAEdX2UKGgGaAloD0MIDCB8KNHiQECUhpRSlGgVS4BoFkdAdTXnmJWNm3V9lChoBmgJaA9DCH5Uw35PoDfAlIaUUpRoFUt3aBZHQHU3VF+d9Ul1fZQoaAZoCWgPQwjh7xezJYsxwJSGlFKUaBVLqWgWR0B1N84iosI3dX2UKGgGaAloD0MI+MJkqmDMKsCUhpRSlGgVS55oFkdAdTih+vyLAHV9lChoBmgJaA9DCIOKql/pfP4/lIaUUpRoFUuDaBZHQHU6VXq7iAF1fZQoaAZoCWgPQwjE7GXbaesSwJSGlFKUaBVLzGgWR0B1Ol7mdRR/dX2UKGgGaAloD0MIcvp6vmbZFMCUhpRSlGgVS3JoFkdAdTsGBWgezXV9lChoBmgJaA9DCDRmEvWCbw1AlIaUUpRoFUuoaBZHQHU++kk8ifR1fZQoaAZoCWgPQwjVXdkFgxsxwJSGlFKUaBVLiGgWR0B1QNkc0cfedX2UKGgGaAloD0MIU5YhjnUBIUCUhpRSlGgVS3RoFkdAds5p2U0N0HV9lChoBmgJaA9DCMLbgxCQyzrAlIaUUpRoFUuTaBZHQHbPltGd7OV1fZQoaAZoCWgPQwg6BfnZyElLwJSGlFKUaBVLZmgWR0B20ItUXHindX2UKGgGaAloD0MI6UZYVMR5EkCUhpRSlGgVS5NoFkdAdtDuUUwi7nV9lChoBmgJaA9DCKlpF9NMryhAlIaUUpRoFUu5aBZHQHbQ/AsTWXl1fZQoaAZoCWgPQwhlUdhF0TxSwJSGlFKUaBVLqWgWR0B20QBtDUmVdX2UKGgGaAloD0MIInL6er4+I8CUhpRSlGgVTTwBaBZHQHbdCjcmBvt1fZQoaAZoCWgPQwhqSx3k9YwzwJSGlFKUaBVLsGgWR0B24gh+vyLAdX2UKGgGaAloD0MILlbUYBrySMCUhpRSlGgVS+FoFkdAduJ8oQWepXV9lChoBmgJaA9DCOrPfqSI1DFAlIaUUpRoFUudaBZHQHbnLu6VdHF1fZQoaAZoCWgPQwiWeEDZlMsLwJSGlFKUaBVLq2gWR0B26ZZNfw7UdX2UKGgGaAloD0MIJ9vAHagnNsCUhpRSlGgVS69oFkdAdupTGYKIBXV9lChoBmgJaA9DCOasTzkmi6O/lIaUUpRoFUvpaBZHQHbufoV2zOZ1fZQoaAZoCWgPQwilLhnHSLI1QJSGlFKUaBVLj2gWR0B29LgKnei0dX2UKGgGaAloD0MIdTv7yoMoMMCUhpRSlGgVTQQBaBZHQHb3JEx7AtZ1fZQoaAZoCWgPQwiZDp2ed/dHQJSGlFKUaBVLh2gWR0B2+eK/EfkndX2UKGgGaAloD0MIho+IKZG4RcCUhpRSlGgVS8VoFkdAdwXIhhYvFnV9lChoBmgJaA9DCJPfopOl/jlAlIaUUpRoFUuFaBZHQHcTYyO7xut1fZQoaAZoCWgPQwhoWfePhbAsQJSGlFKUaBVN6ANoFkdAdxcjxTbWVnV9lChoBmgJaA9DCLQFhNbDz0BAlIaUUpRoFUuvaBZHQHcagRK6Fuh1fZQoaAZoCWgPQwi+MJkqGJlDwJSGlFKUaBVLq2gWR0B3MDGZNO/MdX2UKGgGaAloD0MIxQPKplxJL0CUhpRSlGgVTTEBaBZHQHczuvyLAHp1fZQoaAZoCWgPQwjUm1HzVbVfwJSGlFKUaBVNHgFoFkdAdz/HkLhJiHV9lChoBmgJaA9DCHVz8bc9L0VAlIaUUpRoFUuraBZHQHdAzlDF6zF1fZQoaAZoCWgPQwgpdjQO9ZsGwJSGlFKUaBVLmGgWR0B3YQlF+d9VdX2UKGgGaAloD0MImDRG66j8WUCUhpRSlGgVTegDaBZHQHeNblmvnr91fZQoaAZoCWgPQwhj0t9L4WknwJSGlFKUaBVLmmgWR0B3mDxri2lVdX2UKGgGaAloD0MIo8haQ6nVO8CUhpRSlGgVTegDaBZHQHehRMewLVp1fZQoaAZoCWgPQwixGeCCbNnhv5SGlFKUaBVNaAFoFkdAd6jL2HtWuHV9lChoBmgJaA9DCDwzwXCuKS/AlIaUUpRoFU0zAWgWR0B3qcJPZZjhdX2UKGgGaAloD0MI0QX1LXMTX0CUhpRSlGgVTegDaBZHQHes+so2GZh1fZQoaAZoCWgPQwhg5GVNLExBQJSGlFKUaBVN6ANoFkdAd7CVtoBaLXV9lChoBmgJaA9DCDL/6Js0H09AlIaUUpRoFU3oA2gWR0B3tcNe+mFbdX2UKGgGaAloD0MI88zLYfcdw7+UhpRSlGgVS3hoFkdAd7gE+xGDtnV9lChoBmgJaA9DCDWZ8bbST1RAlIaUUpRoFU3oA2gWR0B3zCkgwGnodX2UKGgGaAloD0MI6ZleYiyRWkCUhpRSlGgVTegDaBZHQHfRKHGjsUt1fZQoaAZoCWgPQwgShgFLrrBAQJSGlFKUaBVLrWgWR0B32GgTRIBjdX2UKGgGaAloD0MI0Vs8vOfA7j+UhpRSlGgVS7NoFkdAd96UPhAGCHV9lChoBmgJaA9DCKqc9pSclzbAlIaUUpRoFUuwaBZHQHfiHe7+T/11fZQoaAZoCWgPQwhH5LuUuuQQQJSGlFKUaBVL62gWR0B36aZiNKh+dX2UKGgGaAloD0MI7ginBS+iR0CUhpRSlGgVTQoBaBZHQHfpr6k69011fZQoaAZoCWgPQwjJsIo3Mk/7P5SGlFKUaBVL42gWR0B38MWGh24edX2UKGgGaAloD0MI1J0nnrONOECUhpRSlGgVTS8BaBZHQHf3xz/6wdN1fZQoaAZoCWgPQwi2Zisv+cNKQJSGlFKUaBVN6ANoFkdAd/gA/LTx5XV9lChoBmgJaA9DCCs1e6AVpktAlIaUUpRoFU3oA2gWR0B3+3cYZVGTdX2UKGgGaAloD0MI7pbkgF1LQECUhpRSlGgVTegDaBZHQHf8VbVz6rN1fZQoaAZoCWgPQwiTVRFuMto6QJSGlFKUaBVLumgWR0B3/Xvd/J/5dX2UKGgGaAloD0MIs7W+SGhrHMCUhpRSlGgVS9RoFkdAeAeGZ/kNnXV9lChoBmgJaA9DCIARNGYS5R9AlIaUUpRoFUvgaBZHQHgR9CZ4Oc51fZQoaAZoCWgPQwgGobyPozEgQJSGlFKUaBVLxGgWR0B4HxGCqZMMdX2UKGgGaAloD0MI0JhJ1As2QsCUhpRSlGgVTQcBaBZHQHghp3kgfU51fZQoaAZoCWgPQwihgy7h0Mc1wJSGlFKUaBVL52gWR0B4J7igkC3gdX2UKGgGaAloD0MI/82LE18FIsCUhpRSlGgVTegDaBZHQHgptAkcCHR1fZQoaAZoCWgPQwhmh/iHLc9FwJSGlFKUaBVLcmgWR0B4LFeSjgyedX2UKGgGaAloD0MIQde+gF7OXECUhpRSlGgVTegDaBZHQHgs243FUAF1fZQoaAZoCWgPQwjBq+XOTL5RwJSGlFKUaBVL+mgWR0B4MTFZPl+3dX2UKGgGaAloD0MIQx1WuOUDY8CUhpRSlGgVTWgBaBZHQHg83vx6OYJ1fZQoaAZoCWgPQwjl795RY+YzQJSGlFKUaBVNTQFoFkdAeEEyxRl6JXV9lChoBmgJaA9DCBTtKqT8e1ZAlIaUUpRoFU3oA2gWR0B4SjW6K+BZdX2UKGgGaAloD0MIiBIteTwtGUCUhpRSlGgVS/loFkdAeFRojv/ipHV9lChoBmgJaA9DCLKeWn11yTbAlIaUUpRoFUv8aBZHQHhXacqe9SN1fZQoaAZoCWgPQwh6/rRRnd4mwJSGlFKUaBVL6WgWR0B4WJzXBguzdX2UKGgGaAloD0MIcuDVcufeasCUhpRSlGgVTYMDaBZHQHhsQuqWC3B1fZQoaAZoCWgPQwidSgaAKshIwJSGlFKUaBVLymgWR0B4bFq/M4cWdX2UKGgGaAloD0MIuynltRLuMECUhpRSlGgVTTABaBZHQHhs/+Kjzqd1fZQoaAZoCWgPQwia0vpbAmAzwJSGlFKUaBVL62gWR0B4fQTAWSEEdX2UKGgGaAloD0MIpPrOL0ocSkCUhpRSlGgVTWUBaBZHQHh9ysCDEm91fZQoaAZoCWgPQwiv6UFBqeFlwJSGlFKUaBVNmwFoFkdAeIQYyfthNXV9lChoBmgJaA9DCFteud42izZAlIaUUpRoFUt9aBZHQHiIlVLi++N1fZQoaAZoCWgPQwhlU67wLjc0QJSGlFKUaBVNEwFoFkdAeJQvze40/HV9lChoBmgJaA9DCFMGDmjpGlbAlIaUUpRoFU06AWgWR0B4mjWwu/UOdX2UKGgGaAloD0MIm3EaogoLPUCUhpRSlGgVS5RoFkdAeKbg8r7O3XV9lChoBmgJaA9DCHEBaJQusFBAlIaUUpRoFU3oA2gWR0B4qXkkrwvydX2UKGgGaAloD0MIBTV8C+vmLcCUhpRSlGgVTR4BaBZHQHiuMKCxu891fZQoaAZoCWgPQwiY32ky4+0WQJSGlFKUaBVLfWgWR0B4smjafzz3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16329f1ecec073e0ebd3b93d85f2aafa5a3963e241b62a6638025a6e0fe4dada
3
+ size 143955
ppo-LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2471667e60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2471667ef0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2471667f80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24715fc050>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f24715fc0e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f24715fc170>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24715fc200>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f24715fc290>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24715fc320>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24715fc3b0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24715fc440>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f247164d660>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 229376,
46
+ "_total_timesteps": 200000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652314301.634911,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObZNz2I26k/vC8QP6SsB78ogD69/NYkvQAAAAAAAAAA+keiPoj3xLxSYuy87u25u0g6B759IuS8AAAAAAAAgD/dCFG+svyZPyFhSr/AFsC+CznNOpYBxr0AAAAAAAAAACa9/T1auoU/NYw9PloE174a5TE9DFyOPQAAAAAAAAAAIM1cvuyH6joQrtI573GRtsU5crw7x/O4AACAPwAAgD+N7uU9PZQ6PB1lhzy0hZA9WumMPKuSRjwAAAAAAAAAAEbjMD4cQ6E/1ISXPjP8cL4lUDk+h7EhvQAAAAAAAAAAdfrXvm8Mxb04Ed+9SrxAvR2Qd734BE49AACAPwAAAABG4H6++MW8POvGcj6+KhI8rQSsvjswjT0AAIA/AACAP03bwj3hWue4GbckvBKmrDqyg5C5Cl2FvAAAAAAAAAAAIH82v1jngb4tZZq7LDQjvYqUBz5d1Aw+AACAPwAAgD9m4tw+pz5JP+W4Ab4Qtci91zioOw66Yb0AAAAAAAAAAJqFfb1cC1W6OsXvPNT28TM7Y9w5lnCfMwAAgD8AAIA/cLzPvvTOl71TG9g8wDmCvvmm5b1q5pK/AACAPwAAgD/mxFK9+vyJPy16Cr6/Yri+PkGXPQgCOrsAAAAAAAAAAODQLz7Xs2e73V/nvQMIyTwchg4+nScCvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.1468799999999999,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU5PgDWk0LkCUhpRSlIwBbJRL3YwBdJRHQHUkXqAz5451fZQoaAZoCWgPQwh3TUhrDMoeQJSGlFKUaBVLhGgWR0B1JOGetjkNdX2UKGgGaAloD0MI/mSMD7PrQ8CUhpRSlGgVS6NoFkdAdSbabWmP53V9lChoBmgJaA9DCFOXjGMkF0XAlIaUUpRoFUt5aBZHQHUnqkl/pdN1fZQoaAZoCWgPQwjkgjP4+w9EwJSGlFKUaBVLimgWR0B1KT0dzXBhdX2UKGgGaAloD0MI1SR4QxopP0CUhpRSlGgVS3toFkdAdSmIKc/dI3V9lChoBmgJaA9DCP5fdeRIhwrAlIaUUpRoFUvGaBZHQHUresHSncd1fZQoaAZoCWgPQwhEpnwIqso4wJSGlFKUaBVLj2gWR0B1LLrHEMspdX2UKGgGaAloD0MImrUUkPbnTMCUhpRSlGgVTUwBaBZHQHUtRWPtD2J1fZQoaAZoCWgPQwid8uhGWCxAwJSGlFKUaBVLwmgWR0B1LXFsHjZMdX2UKGgGaAloD0MIoiqm0k98OkCUhpRSlGgVS8poFkdAdS4pH7P6bnV9lChoBmgJaA9DCKKakqzD8QlAlIaUUpRoFUv5aBZHQHUyTJ2dNFl1fZQoaAZoCWgPQwhau+1Cc1kzwJSGlFKUaBVLsGgWR0B1M8lruYx+dX2UKGgGaAloD0MIe4UF9wPOO0CUhpRSlGgVS79oFkdAdTO7I1cdHXV9lChoBmgJaA9DCOoJSzygeEFAlIaUUpRoFUu4aBZHQHUz7VjI7vJ1fZQoaAZoCWgPQwh+kGXBxN9DwJSGlFKUaBVLYGgWR0B1NH2exwAEdX2UKGgGaAloD0MIDCB8KNHiQECUhpRSlGgVS4BoFkdAdTXnmJWNm3V9lChoBmgJaA9DCH5Uw35PoDfAlIaUUpRoFUt3aBZHQHU3VF+d9Ul1fZQoaAZoCWgPQwjh7xezJYsxwJSGlFKUaBVLqWgWR0B1N84iosI3dX2UKGgGaAloD0MI+MJkqmDMKsCUhpRSlGgVS55oFkdAdTih+vyLAHV9lChoBmgJaA9DCIOKql/pfP4/lIaUUpRoFUuDaBZHQHU6VXq7iAF1fZQoaAZoCWgPQwjE7GXbaesSwJSGlFKUaBVLzGgWR0B1Ol7mdRR/dX2UKGgGaAloD0MIcvp6vmbZFMCUhpRSlGgVS3JoFkdAdTsGBWgezXV9lChoBmgJaA9DCDRmEvWCbw1AlIaUUpRoFUuoaBZHQHU++kk8ifR1fZQoaAZoCWgPQwjVXdkFgxsxwJSGlFKUaBVLiGgWR0B1QNkc0cfedX2UKGgGaAloD0MIU5YhjnUBIUCUhpRSlGgVS3RoFkdAds5p2U0N0HV9lChoBmgJaA9DCMLbgxCQyzrAlIaUUpRoFUuTaBZHQHbPltGd7OV1fZQoaAZoCWgPQwg6BfnZyElLwJSGlFKUaBVLZmgWR0B20ItUXHindX2UKGgGaAloD0MI6UZYVMR5EkCUhpRSlGgVS5NoFkdAdtDuUUwi7nV9lChoBmgJaA9DCKlpF9NMryhAlIaUUpRoFUu5aBZHQHbQ/AsTWXl1fZQoaAZoCWgPQwhlUdhF0TxSwJSGlFKUaBVLqWgWR0B20QBtDUmVdX2UKGgGaAloD0MIInL6er4+I8CUhpRSlGgVTTwBaBZHQHbdCjcmBvt1fZQoaAZoCWgPQwhqSx3k9YwzwJSGlFKUaBVLsGgWR0B24gh+vyLAdX2UKGgGaAloD0MILlbUYBrySMCUhpRSlGgVS+FoFkdAduJ8oQWepXV9lChoBmgJaA9DCOrPfqSI1DFAlIaUUpRoFUudaBZHQHbnLu6VdHF1fZQoaAZoCWgPQwiWeEDZlMsLwJSGlFKUaBVLq2gWR0B26ZZNfw7UdX2UKGgGaAloD0MIJ9vAHagnNsCUhpRSlGgVS69oFkdAdupTGYKIBXV9lChoBmgJaA9DCOasTzkmi6O/lIaUUpRoFUvpaBZHQHbufoV2zOZ1fZQoaAZoCWgPQwilLhnHSLI1QJSGlFKUaBVLj2gWR0B29LgKnei0dX2UKGgGaAloD0MIdTv7yoMoMMCUhpRSlGgVTQQBaBZHQHb3JEx7AtZ1fZQoaAZoCWgPQwiZDp2ed/dHQJSGlFKUaBVLh2gWR0B2+eK/EfkndX2UKGgGaAloD0MIho+IKZG4RcCUhpRSlGgVS8VoFkdAdwXIhhYvFnV9lChoBmgJaA9DCJPfopOl/jlAlIaUUpRoFUuFaBZHQHcTYyO7xut1fZQoaAZoCWgPQwhoWfePhbAsQJSGlFKUaBVN6ANoFkdAdxcjxTbWVnV9lChoBmgJaA9DCLQFhNbDz0BAlIaUUpRoFUuvaBZHQHcagRK6Fuh1fZQoaAZoCWgPQwi+MJkqGJlDwJSGlFKUaBVLq2gWR0B3MDGZNO/MdX2UKGgGaAloD0MIxQPKplxJL0CUhpRSlGgVTTEBaBZHQHczuvyLAHp1fZQoaAZoCWgPQwjUm1HzVbVfwJSGlFKUaBVNHgFoFkdAdz/HkLhJiHV9lChoBmgJaA9DCHVz8bc9L0VAlIaUUpRoFUuraBZHQHdAzlDF6zF1fZQoaAZoCWgPQwgpdjQO9ZsGwJSGlFKUaBVLmGgWR0B3YQlF+d9VdX2UKGgGaAloD0MImDRG66j8WUCUhpRSlGgVTegDaBZHQHeNblmvnr91fZQoaAZoCWgPQwhj0t9L4WknwJSGlFKUaBVLmmgWR0B3mDxri2lVdX2UKGgGaAloD0MIo8haQ6nVO8CUhpRSlGgVTegDaBZHQHehRMewLVp1fZQoaAZoCWgPQwixGeCCbNnhv5SGlFKUaBVNaAFoFkdAd6jL2HtWuHV9lChoBmgJaA9DCDwzwXCuKS/AlIaUUpRoFU0zAWgWR0B3qcJPZZjhdX2UKGgGaAloD0MI0QX1LXMTX0CUhpRSlGgVTegDaBZHQHes+so2GZh1fZQoaAZoCWgPQwhg5GVNLExBQJSGlFKUaBVN6ANoFkdAd7CVtoBaLXV9lChoBmgJaA9DCDL/6Js0H09AlIaUUpRoFU3oA2gWR0B3tcNe+mFbdX2UKGgGaAloD0MI88zLYfcdw7+UhpRSlGgVS3hoFkdAd7gE+xGDtnV9lChoBmgJaA9DCDWZ8bbST1RAlIaUUpRoFU3oA2gWR0B3zCkgwGnodX2UKGgGaAloD0MI6ZleYiyRWkCUhpRSlGgVTegDaBZHQHfRKHGjsUt1fZQoaAZoCWgPQwgShgFLrrBAQJSGlFKUaBVLrWgWR0B32GgTRIBjdX2UKGgGaAloD0MI0Vs8vOfA7j+UhpRSlGgVS7NoFkdAd96UPhAGCHV9lChoBmgJaA9DCKqc9pSclzbAlIaUUpRoFUuwaBZHQHfiHe7+T/11fZQoaAZoCWgPQwhH5LuUuuQQQJSGlFKUaBVL62gWR0B36aZiNKh+dX2UKGgGaAloD0MI7ginBS+iR0CUhpRSlGgVTQoBaBZHQHfpr6k69011fZQoaAZoCWgPQwjJsIo3Mk/7P5SGlFKUaBVL42gWR0B38MWGh24edX2UKGgGaAloD0MI1J0nnrONOECUhpRSlGgVTS8BaBZHQHf3xz/6wdN1fZQoaAZoCWgPQwi2Zisv+cNKQJSGlFKUaBVN6ANoFkdAd/gA/LTx5XV9lChoBmgJaA9DCCs1e6AVpktAlIaUUpRoFU3oA2gWR0B3+3cYZVGTdX2UKGgGaAloD0MI7pbkgF1LQECUhpRSlGgVTegDaBZHQHf8VbVz6rN1fZQoaAZoCWgPQwiTVRFuMto6QJSGlFKUaBVLumgWR0B3/Xvd/J/5dX2UKGgGaAloD0MIs7W+SGhrHMCUhpRSlGgVS9RoFkdAeAeGZ/kNnXV9lChoBmgJaA9DCIARNGYS5R9AlIaUUpRoFUvgaBZHQHgR9CZ4Oc51fZQoaAZoCWgPQwgGobyPozEgQJSGlFKUaBVLxGgWR0B4HxGCqZMMdX2UKGgGaAloD0MI0JhJ1As2QsCUhpRSlGgVTQcBaBZHQHghp3kgfU51fZQoaAZoCWgPQwihgy7h0Mc1wJSGlFKUaBVL52gWR0B4J7igkC3gdX2UKGgGaAloD0MI/82LE18FIsCUhpRSlGgVTegDaBZHQHgptAkcCHR1fZQoaAZoCWgPQwhmh/iHLc9FwJSGlFKUaBVLcmgWR0B4LFeSjgyedX2UKGgGaAloD0MIQde+gF7OXECUhpRSlGgVTegDaBZHQHgs243FUAF1fZQoaAZoCWgPQwjBq+XOTL5RwJSGlFKUaBVL+mgWR0B4MTFZPl+3dX2UKGgGaAloD0MIQx1WuOUDY8CUhpRSlGgVTWgBaBZHQHg83vx6OYJ1fZQoaAZoCWgPQwjl795RY+YzQJSGlFKUaBVNTQFoFkdAeEEyxRl6JXV9lChoBmgJaA9DCBTtKqT8e1ZAlIaUUpRoFU3oA2gWR0B4SjW6K+BZdX2UKGgGaAloD0MIiBIteTwtGUCUhpRSlGgVS/loFkdAeFRojv/ipHV9lChoBmgJaA9DCLKeWn11yTbAlIaUUpRoFUv8aBZHQHhXacqe9SN1fZQoaAZoCWgPQwh6/rRRnd4mwJSGlFKUaBVL6WgWR0B4WJzXBguzdX2UKGgGaAloD0MIcuDVcufeasCUhpRSlGgVTYMDaBZHQHhsQuqWC3B1fZQoaAZoCWgPQwidSgaAKshIwJSGlFKUaBVLymgWR0B4bFq/M4cWdX2UKGgGaAloD0MIuynltRLuMECUhpRSlGgVTTABaBZHQHhs/+Kjzqd1fZQoaAZoCWgPQwia0vpbAmAzwJSGlFKUaBVL62gWR0B4fQTAWSEEdX2UKGgGaAloD0MIpPrOL0ocSkCUhpRSlGgVTWUBaBZHQHh9ysCDEm91fZQoaAZoCWgPQwiv6UFBqeFlwJSGlFKUaBVNmwFoFkdAeIQYyfthNXV9lChoBmgJaA9DCFteud42izZAlIaUUpRoFUt9aBZHQHiIlVLi++N1fZQoaAZoCWgPQwhlU67wLjc0QJSGlFKUaBVNEwFoFkdAeJQvze40/HV9lChoBmgJaA9DCFMGDmjpGlbAlIaUUpRoFU06AWgWR0B4mjWwu/UOdX2UKGgGaAloD0MIm3EaogoLPUCUhpRSlGgVS5RoFkdAeKbg8r7O3XV9lChoBmgJaA9DCHEBaJQusFBAlIaUUpRoFU3oA2gWR0B4qXkkrwvydX2UKGgGaAloD0MIBTV8C+vmLcCUhpRSlGgVTR4BaBZHQHiuMKCxu891fZQoaAZoCWgPQwiY32ky4+0WQJSGlFKUaBVLfWgWR0B4smjafzz3dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 70,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b3d7f9dbed85bae2a9bc632964ada6e6dbceb7f306ac10e3e946b578f367bb9
3
+ size 84829
ppo-LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47242c462ac2ed4add6c5c9ed0f427fb8b8b643e871d33ba6d9d5d0963d45a85
3
+ size 43201
ppo-LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:117187f12a33fb61e7054ee1705ef354971ef9d59294b5fc1dfada739218e970
3
+ size 273995
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -130.75245352408092, "std_reward": 14.34904018867286, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T00:27:20.634288"}