My first model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander.zip +3 -0
- ppo-LunarLander/_stable_baselines3_version +1 -0
- ppo-LunarLander/data +94 -0
- ppo-LunarLander/policy.optimizer.pth +3 -0
- ppo-LunarLander/policy.pth +3 -0
- ppo-LunarLander/pytorch_variables.pth +3 -0
- ppo-LunarLander/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -130.75 +/- 14.35
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2471667e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2471667ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2471667f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24715fc050>", "_build": "<function ActorCriticPolicy._build at 0x7f24715fc0e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f24715fc170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24715fc200>", "_predict": "<function ActorCriticPolicy._predict at 0x7f24715fc290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24715fc320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24715fc3b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24715fc440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f247164d660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 229376, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652314301.634911, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObZNz2I26k/vC8QP6SsB78ogD69/NYkvQAAAAAAAAAA+keiPoj3xLxSYuy87u25u0g6B759IuS8AAAAAAAAgD/dCFG+svyZPyFhSr/AFsC+CznNOpYBxr0AAAAAAAAAACa9/T1auoU/NYw9PloE174a5TE9DFyOPQAAAAAAAAAAIM1cvuyH6joQrtI573GRtsU5crw7x/O4AACAPwAAgD+N7uU9PZQ6PB1lhzy0hZA9WumMPKuSRjwAAAAAAAAAAEbjMD4cQ6E/1ISXPjP8cL4lUDk+h7EhvQAAAAAAAAAAdfrXvm8Mxb04Ed+9SrxAvR2Qd734BE49AACAPwAAAABG4H6++MW8POvGcj6+KhI8rQSsvjswjT0AAIA/AACAP03bwj3hWue4GbckvBKmrDqyg5C5Cl2FvAAAAAAAAAAAIH82v1jngb4tZZq7LDQjvYqUBz5d1Aw+AACAPwAAgD9m4tw+pz5JP+W4Ab4Qtci91zioOw66Yb0AAAAAAAAAAJqFfb1cC1W6OsXvPNT28TM7Y9w5lnCfMwAAgD8AAIA/cLzPvvTOl71TG9g8wDmCvvmm5b1q5pK/AACAPwAAgD/mxFK9+vyJPy16Cr6/Yri+PkGXPQgCOrsAAAAAAAAAAODQLz7Xs2e73V/nvQMIyTwchg4+nScCvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU5PgDWk0LkCUhpRSlIwBbJRL3YwBdJRHQHUkXqAz5451fZQoaAZoCWgPQwh3TUhrDMoeQJSGlFKUaBVLhGgWR0B1JOGetjkNdX2UKGgGaAloD0MI/mSMD7PrQ8CUhpRSlGgVS6NoFkdAdSbabWmP53V9lChoBmgJaA9DCFOXjGMkF0XAlIaUUpRoFUt5aBZHQHUnqkl/pdN1fZQoaAZoCWgPQwjkgjP4+w9EwJSGlFKUaBVLimgWR0B1KT0dzXBhdX2UKGgGaAloD0MI1SR4QxopP0CUhpRSlGgVS3toFkdAdSmIKc/dI3V9lChoBmgJaA9DCP5fdeRIhwrAlIaUUpRoFUvGaBZHQHUresHSncd1fZQoaAZoCWgPQwhEpnwIqso4wJSGlFKUaBVLj2gWR0B1LLrHEMspdX2UKGgGaAloD0MImrUUkPbnTMCUhpRSlGgVTUwBaBZHQHUtRWPtD2J1fZQoaAZoCWgPQwid8uhGWCxAwJSGlFKUaBVLwmgWR0B1LXFsHjZMdX2UKGgGaAloD0MIoiqm0k98OkCUhpRSlGgVS8poFkdAdS4pH7P6bnV9lChoBmgJaA9DCKKakqzD8QlAlIaUUpRoFUv5aBZHQHUyTJ2dNFl1fZQoaAZoCWgPQwhau+1Cc1kzwJSGlFKUaBVLsGgWR0B1M8lruYx+dX2UKGgGaAloD0MIe4UF9wPOO0CUhpRSlGgVS79oFkdAdTO7I1cdHXV9lChoBmgJaA9DCOoJSzygeEFAlIaUUpRoFUu4aBZHQHUz7VjI7vJ1fZQoaAZoCWgPQwh+kGXBxN9DwJSGlFKUaBVLYGgWR0B1NH2exwAEdX2UKGgGaAloD0MIDCB8KNHiQECUhpRSlGgVS4BoFkdAdTXnmJWNm3V9lChoBmgJaA9DCH5Uw35PoDfAlIaUUpRoFUt3aBZHQHU3VF+d9Ul1fZQoaAZoCWgPQwjh7xezJYsxwJSGlFKUaBVLqWgWR0B1N84iosI3dX2UKGgGaAloD0MI+MJkqmDMKsCUhpRSlGgVS55oFkdAdTih+vyLAHV9lChoBmgJaA9DCIOKql/pfP4/lIaUUpRoFUuDaBZHQHU6VXq7iAF1fZQoaAZoCWgPQwjE7GXbaesSwJSGlFKUaBVLzGgWR0B1Ol7mdRR/dX2UKGgGaAloD0MIcvp6vmbZFMCUhpRSlGgVS3JoFkdAdTsGBWgezXV9lChoBmgJaA9DCDRmEvWCbw1AlIaUUpRoFUuoaBZHQHU++kk8ifR1fZQoaAZoCWgPQwjVXdkFgxsxwJSGlFKUaBVLiGgWR0B1QNkc0cfedX2UKGgGaAloD0MIU5YhjnUBIUCUhpRSlGgVS3RoFkdAds5p2U0N0HV9lChoBmgJaA9DCMLbgxCQyzrAlIaUUpRoFUuTaBZHQHbPltGd7OV1fZQoaAZoCWgPQwg6BfnZyElLwJSGlFKUaBVLZmgWR0B20ItUXHindX2UKGgGaAloD0MI6UZYVMR5EkCUhpRSlGgVS5NoFkdAdtDuUUwi7nV9lChoBmgJaA9DCKlpF9NMryhAlIaUUpRoFUu5aBZHQHbQ/AsTWXl1fZQoaAZoCWgPQwhlUdhF0TxSwJSGlFKUaBVLqWgWR0B20QBtDUmVdX2UKGgGaAloD0MIInL6er4+I8CUhpRSlGgVTTwBaBZHQHbdCjcmBvt1fZQoaAZoCWgPQwhqSx3k9YwzwJSGlFKUaBVLsGgWR0B24gh+vyLAdX2UKGgGaAloD0MILlbUYBrySMCUhpRSlGgVS+FoFkdAduJ8oQWepXV9lChoBmgJaA9DCOrPfqSI1DFAlIaUUpRoFUudaBZHQHbnLu6VdHF1fZQoaAZoCWgPQwiWeEDZlMsLwJSGlFKUaBVLq2gWR0B26ZZNfw7UdX2UKGgGaAloD0MIJ9vAHagnNsCUhpRSlGgVS69oFkdAdupTGYKIBXV9lChoBmgJaA9DCOasTzkmi6O/lIaUUpRoFUvpaBZHQHbufoV2zOZ1fZQoaAZoCWgPQwilLhnHSLI1QJSGlFKUaBVLj2gWR0B29LgKnei0dX2UKGgGaAloD0MIdTv7yoMoMMCUhpRSlGgVTQQBaBZHQHb3JEx7AtZ1fZQoaAZoCWgPQwiZDp2ed/dHQJSGlFKUaBVLh2gWR0B2+eK/EfkndX2UKGgGaAloD0MIho+IKZG4RcCUhpRSlGgVS8VoFkdAdwXIhhYvFnV9lChoBmgJaA9DCJPfopOl/jlAlIaUUpRoFUuFaBZHQHcTYyO7xut1fZQoaAZoCWgPQwhoWfePhbAsQJSGlFKUaBVN6ANoFkdAdxcjxTbWVnV9lChoBmgJaA9DCLQFhNbDz0BAlIaUUpRoFUuvaBZHQHcagRK6Fuh1fZQoaAZoCWgPQwi+MJkqGJlDwJSGlFKUaBVLq2gWR0B3MDGZNO/MdX2UKGgGaAloD0MIxQPKplxJL0CUhpRSlGgVTTEBaBZHQHczuvyLAHp1fZQoaAZoCWgPQwjUm1HzVbVfwJSGlFKUaBVNHgFoFkdAdz/HkLhJiHV9lChoBmgJaA9DCHVz8bc9L0VAlIaUUpRoFUuraBZHQHdAzlDF6zF1fZQoaAZoCWgPQwgpdjQO9ZsGwJSGlFKUaBVLmGgWR0B3YQlF+d9VdX2UKGgGaAloD0MImDRG66j8WUCUhpRSlGgVTegDaBZHQHeNblmvnr91fZQoaAZoCWgPQwhj0t9L4WknwJSGlFKUaBVLmmgWR0B3mDxri2lVdX2UKGgGaAloD0MIo8haQ6nVO8CUhpRSlGgVTegDaBZHQHehRMewLVp1fZQoaAZoCWgPQwixGeCCbNnhv5SGlFKUaBVNaAFoFkdAd6jL2HtWuHV9lChoBmgJaA9DCDwzwXCuKS/AlIaUUpRoFU0zAWgWR0B3qcJPZZjhdX2UKGgGaAloD0MI0QX1LXMTX0CUhpRSlGgVTegDaBZHQHes+so2GZh1fZQoaAZoCWgPQwhg5GVNLExBQJSGlFKUaBVN6ANoFkdAd7CVtoBaLXV9lChoBmgJaA9DCDL/6Js0H09AlIaUUpRoFU3oA2gWR0B3tcNe+mFbdX2UKGgGaAloD0MI88zLYfcdw7+UhpRSlGgVS3hoFkdAd7gE+xGDtnV9lChoBmgJaA9DCDWZ8bbST1RAlIaUUpRoFU3oA2gWR0B3zCkgwGnodX2UKGgGaAloD0MI6ZleYiyRWkCUhpRSlGgVTegDaBZHQHfRKHGjsUt1fZQoaAZoCWgPQwgShgFLrrBAQJSGlFKUaBVLrWgWR0B32GgTRIBjdX2UKGgGaAloD0MI0Vs8vOfA7j+UhpRSlGgVS7NoFkdAd96UPhAGCHV9lChoBmgJaA9DCKqc9pSclzbAlIaUUpRoFUuwaBZHQHfiHe7+T/11fZQoaAZoCWgPQwhH5LuUuuQQQJSGlFKUaBVL62gWR0B36aZiNKh+dX2UKGgGaAloD0MI7ginBS+iR0CUhpRSlGgVTQoBaBZHQHfpr6k69011fZQoaAZoCWgPQwjJsIo3Mk/7P5SGlFKUaBVL42gWR0B38MWGh24edX2UKGgGaAloD0MI1J0nnrONOECUhpRSlGgVTS8BaBZHQHf3xz/6wdN1fZQoaAZoCWgPQwi2Zisv+cNKQJSGlFKUaBVN6ANoFkdAd/gA/LTx5XV9lChoBmgJaA9DCCs1e6AVpktAlIaUUpRoFU3oA2gWR0B3+3cYZVGTdX2UKGgGaAloD0MI7pbkgF1LQECUhpRSlGgVTegDaBZHQHf8VbVz6rN1fZQoaAZoCWgPQwiTVRFuMto6QJSGlFKUaBVLumgWR0B3/Xvd/J/5dX2UKGgGaAloD0MIs7W+SGhrHMCUhpRSlGgVS9RoFkdAeAeGZ/kNnXV9lChoBmgJaA9DCIARNGYS5R9AlIaUUpRoFUvgaBZHQHgR9CZ4Oc51fZQoaAZoCWgPQwgGobyPozEgQJSGlFKUaBVLxGgWR0B4HxGCqZMMdX2UKGgGaAloD0MI0JhJ1As2QsCUhpRSlGgVTQcBaBZHQHghp3kgfU51fZQoaAZoCWgPQwihgy7h0Mc1wJSGlFKUaBVL52gWR0B4J7igkC3gdX2UKGgGaAloD0MI/82LE18FIsCUhpRSlGgVTegDaBZHQHgptAkcCHR1fZQoaAZoCWgPQwhmh/iHLc9FwJSGlFKUaBVLcmgWR0B4LFeSjgyedX2UKGgGaAloD0MIQde+gF7OXECUhpRSlGgVTegDaBZHQHgs243FUAF1fZQoaAZoCWgPQwjBq+XOTL5RwJSGlFKUaBVL+mgWR0B4MTFZPl+3dX2UKGgGaAloD0MIQx1WuOUDY8CUhpRSlGgVTWgBaBZHQHg83vx6OYJ1fZQoaAZoCWgPQwjl795RY+YzQJSGlFKUaBVNTQFoFkdAeEEyxRl6JXV9lChoBmgJaA9DCBTtKqT8e1ZAlIaUUpRoFU3oA2gWR0B4SjW6K+BZdX2UKGgGaAloD0MIiBIteTwtGUCUhpRSlGgVS/loFkdAeFRojv/ipHV9lChoBmgJaA9DCLKeWn11yTbAlIaUUpRoFUv8aBZHQHhXacqe9SN1fZQoaAZoCWgPQwh6/rRRnd4mwJSGlFKUaBVL6WgWR0B4WJzXBguzdX2UKGgGaAloD0MIcuDVcufeasCUhpRSlGgVTYMDaBZHQHhsQuqWC3B1fZQoaAZoCWgPQwidSgaAKshIwJSGlFKUaBVLymgWR0B4bFq/M4cWdX2UKGgGaAloD0MIuynltRLuMECUhpRSlGgVTTABaBZHQHhs/+Kjzqd1fZQoaAZoCWgPQwia0vpbAmAzwJSGlFKUaBVL62gWR0B4fQTAWSEEdX2UKGgGaAloD0MIpPrOL0ocSkCUhpRSlGgVTWUBaBZHQHh9ysCDEm91fZQoaAZoCWgPQwiv6UFBqeFlwJSGlFKUaBVNmwFoFkdAeIQYyfthNXV9lChoBmgJaA9DCFteud42izZAlIaUUpRoFUt9aBZHQHiIlVLi++N1fZQoaAZoCWgPQwhlU67wLjc0QJSGlFKUaBVNEwFoFkdAeJQvze40/HV9lChoBmgJaA9DCFMGDmjpGlbAlIaUUpRoFU06AWgWR0B4mjWwu/UOdX2UKGgGaAloD0MIm3EaogoLPUCUhpRSlGgVS5RoFkdAeKbg8r7O3XV9lChoBmgJaA9DCHEBaJQusFBAlIaUUpRoFU3oA2gWR0B4qXkkrwvydX2UKGgGaAloD0MIBTV8C+vmLcCUhpRSlGgVTR4BaBZHQHiuMKCxu891fZQoaAZoCWgPQwiY32ky4+0WQJSGlFKUaBVLfWgWR0B4smjafzz3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16329f1ecec073e0ebd3b93d85f2aafa5a3963e241b62a6638025a6e0fe4dada
|
3 |
+
size 143955
|
ppo-LunarLander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2471667e60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2471667ef0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2471667f80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24715fc050>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f24715fc0e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f24715fc170>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24715fc200>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f24715fc290>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24715fc320>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24715fc3b0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24715fc440>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f247164d660>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 229376,
|
46 |
+
"_total_timesteps": 200000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652314301.634911,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObZNz2I26k/vC8QP6SsB78ogD69/NYkvQAAAAAAAAAA+keiPoj3xLxSYuy87u25u0g6B759IuS8AAAAAAAAgD/dCFG+svyZPyFhSr/AFsC+CznNOpYBxr0AAAAAAAAAACa9/T1auoU/NYw9PloE174a5TE9DFyOPQAAAAAAAAAAIM1cvuyH6joQrtI573GRtsU5crw7x/O4AACAPwAAgD+N7uU9PZQ6PB1lhzy0hZA9WumMPKuSRjwAAAAAAAAAAEbjMD4cQ6E/1ISXPjP8cL4lUDk+h7EhvQAAAAAAAAAAdfrXvm8Mxb04Ed+9SrxAvR2Qd734BE49AACAPwAAAABG4H6++MW8POvGcj6+KhI8rQSsvjswjT0AAIA/AACAP03bwj3hWue4GbckvBKmrDqyg5C5Cl2FvAAAAAAAAAAAIH82v1jngb4tZZq7LDQjvYqUBz5d1Aw+AACAPwAAgD9m4tw+pz5JP+W4Ab4Qtci91zioOw66Yb0AAAAAAAAAAJqFfb1cC1W6OsXvPNT28TM7Y9w5lnCfMwAAgD8AAIA/cLzPvvTOl71TG9g8wDmCvvmm5b1q5pK/AACAPwAAgD/mxFK9+vyJPy16Cr6/Yri+PkGXPQgCOrsAAAAAAAAAAODQLz7Xs2e73V/nvQMIyTwchg4+nScCvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.1468799999999999,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU5PgDWk0LkCUhpRSlIwBbJRL3YwBdJRHQHUkXqAz5451fZQoaAZoCWgPQwh3TUhrDMoeQJSGlFKUaBVLhGgWR0B1JOGetjkNdX2UKGgGaAloD0MI/mSMD7PrQ8CUhpRSlGgVS6NoFkdAdSbabWmP53V9lChoBmgJaA9DCFOXjGMkF0XAlIaUUpRoFUt5aBZHQHUnqkl/pdN1fZQoaAZoCWgPQwjkgjP4+w9EwJSGlFKUaBVLimgWR0B1KT0dzXBhdX2UKGgGaAloD0MI1SR4QxopP0CUhpRSlGgVS3toFkdAdSmIKc/dI3V9lChoBmgJaA9DCP5fdeRIhwrAlIaUUpRoFUvGaBZHQHUresHSncd1fZQoaAZoCWgPQwhEpnwIqso4wJSGlFKUaBVLj2gWR0B1LLrHEMspdX2UKGgGaAloD0MImrUUkPbnTMCUhpRSlGgVTUwBaBZHQHUtRWPtD2J1fZQoaAZoCWgPQwid8uhGWCxAwJSGlFKUaBVLwmgWR0B1LXFsHjZMdX2UKGgGaAloD0MIoiqm0k98OkCUhpRSlGgVS8poFkdAdS4pH7P6bnV9lChoBmgJaA9DCKKakqzD8QlAlIaUUpRoFUv5aBZHQHUyTJ2dNFl1fZQoaAZoCWgPQwhau+1Cc1kzwJSGlFKUaBVLsGgWR0B1M8lruYx+dX2UKGgGaAloD0MIe4UF9wPOO0CUhpRSlGgVS79oFkdAdTO7I1cdHXV9lChoBmgJaA9DCOoJSzygeEFAlIaUUpRoFUu4aBZHQHUz7VjI7vJ1fZQoaAZoCWgPQwh+kGXBxN9DwJSGlFKUaBVLYGgWR0B1NH2exwAEdX2UKGgGaAloD0MIDCB8KNHiQECUhpRSlGgVS4BoFkdAdTXnmJWNm3V9lChoBmgJaA9DCH5Uw35PoDfAlIaUUpRoFUt3aBZHQHU3VF+d9Ul1fZQoaAZoCWgPQwjh7xezJYsxwJSGlFKUaBVLqWgWR0B1N84iosI3dX2UKGgGaAloD0MI+MJkqmDMKsCUhpRSlGgVS55oFkdAdTih+vyLAHV9lChoBmgJaA9DCIOKql/pfP4/lIaUUpRoFUuDaBZHQHU6VXq7iAF1fZQoaAZoCWgPQwjE7GXbaesSwJSGlFKUaBVLzGgWR0B1Ol7mdRR/dX2UKGgGaAloD0MIcvp6vmbZFMCUhpRSlGgVS3JoFkdAdTsGBWgezXV9lChoBmgJaA9DCDRmEvWCbw1AlIaUUpRoFUuoaBZHQHU++kk8ifR1fZQoaAZoCWgPQwjVXdkFgxsxwJSGlFKUaBVLiGgWR0B1QNkc0cfedX2UKGgGaAloD0MIU5YhjnUBIUCUhpRSlGgVS3RoFkdAds5p2U0N0HV9lChoBmgJaA9DCMLbgxCQyzrAlIaUUpRoFUuTaBZHQHbPltGd7OV1fZQoaAZoCWgPQwg6BfnZyElLwJSGlFKUaBVLZmgWR0B20ItUXHindX2UKGgGaAloD0MI6UZYVMR5EkCUhpRSlGgVS5NoFkdAdtDuUUwi7nV9lChoBmgJaA9DCKlpF9NMryhAlIaUUpRoFUu5aBZHQHbQ/AsTWXl1fZQoaAZoCWgPQwhlUdhF0TxSwJSGlFKUaBVLqWgWR0B20QBtDUmVdX2UKGgGaAloD0MIInL6er4+I8CUhpRSlGgVTTwBaBZHQHbdCjcmBvt1fZQoaAZoCWgPQwhqSx3k9YwzwJSGlFKUaBVLsGgWR0B24gh+vyLAdX2UKGgGaAloD0MILlbUYBrySMCUhpRSlGgVS+FoFkdAduJ8oQWepXV9lChoBmgJaA9DCOrPfqSI1DFAlIaUUpRoFUudaBZHQHbnLu6VdHF1fZQoaAZoCWgPQwiWeEDZlMsLwJSGlFKUaBVLq2gWR0B26ZZNfw7UdX2UKGgGaAloD0MIJ9vAHagnNsCUhpRSlGgVS69oFkdAdupTGYKIBXV9lChoBmgJaA9DCOasTzkmi6O/lIaUUpRoFUvpaBZHQHbufoV2zOZ1fZQoaAZoCWgPQwilLhnHSLI1QJSGlFKUaBVLj2gWR0B29LgKnei0dX2UKGgGaAloD0MIdTv7yoMoMMCUhpRSlGgVTQQBaBZHQHb3JEx7AtZ1fZQoaAZoCWgPQwiZDp2ed/dHQJSGlFKUaBVLh2gWR0B2+eK/EfkndX2UKGgGaAloD0MIho+IKZG4RcCUhpRSlGgVS8VoFkdAdwXIhhYvFnV9lChoBmgJaA9DCJPfopOl/jlAlIaUUpRoFUuFaBZHQHcTYyO7xut1fZQoaAZoCWgPQwhoWfePhbAsQJSGlFKUaBVN6ANoFkdAdxcjxTbWVnV9lChoBmgJaA9DCLQFhNbDz0BAlIaUUpRoFUuvaBZHQHcagRK6Fuh1fZQoaAZoCWgPQwi+MJkqGJlDwJSGlFKUaBVLq2gWR0B3MDGZNO/MdX2UKGgGaAloD0MIxQPKplxJL0CUhpRSlGgVTTEBaBZHQHczuvyLAHp1fZQoaAZoCWgPQwjUm1HzVbVfwJSGlFKUaBVNHgFoFkdAdz/HkLhJiHV9lChoBmgJaA9DCHVz8bc9L0VAlIaUUpRoFUuraBZHQHdAzlDF6zF1fZQoaAZoCWgPQwgpdjQO9ZsGwJSGlFKUaBVLmGgWR0B3YQlF+d9VdX2UKGgGaAloD0MImDRG66j8WUCUhpRSlGgVTegDaBZHQHeNblmvnr91fZQoaAZoCWgPQwhj0t9L4WknwJSGlFKUaBVLmmgWR0B3mDxri2lVdX2UKGgGaAloD0MIo8haQ6nVO8CUhpRSlGgVTegDaBZHQHehRMewLVp1fZQoaAZoCWgPQwixGeCCbNnhv5SGlFKUaBVNaAFoFkdAd6jL2HtWuHV9lChoBmgJaA9DCDwzwXCuKS/AlIaUUpRoFU0zAWgWR0B3qcJPZZjhdX2UKGgGaAloD0MI0QX1LXMTX0CUhpRSlGgVTegDaBZHQHes+so2GZh1fZQoaAZoCWgPQwhg5GVNLExBQJSGlFKUaBVN6ANoFkdAd7CVtoBaLXV9lChoBmgJaA9DCDL/6Js0H09AlIaUUpRoFU3oA2gWR0B3tcNe+mFbdX2UKGgGaAloD0MI88zLYfcdw7+UhpRSlGgVS3hoFkdAd7gE+xGDtnV9lChoBmgJaA9DCDWZ8bbST1RAlIaUUpRoFU3oA2gWR0B3zCkgwGnodX2UKGgGaAloD0MI6ZleYiyRWkCUhpRSlGgVTegDaBZHQHfRKHGjsUt1fZQoaAZoCWgPQwgShgFLrrBAQJSGlFKUaBVLrWgWR0B32GgTRIBjdX2UKGgGaAloD0MI0Vs8vOfA7j+UhpRSlGgVS7NoFkdAd96UPhAGCHV9lChoBmgJaA9DCKqc9pSclzbAlIaUUpRoFUuwaBZHQHfiHe7+T/11fZQoaAZoCWgPQwhH5LuUuuQQQJSGlFKUaBVL62gWR0B36aZiNKh+dX2UKGgGaAloD0MI7ginBS+iR0CUhpRSlGgVTQoBaBZHQHfpr6k69011fZQoaAZoCWgPQwjJsIo3Mk/7P5SGlFKUaBVL42gWR0B38MWGh24edX2UKGgGaAloD0MI1J0nnrONOECUhpRSlGgVTS8BaBZHQHf3xz/6wdN1fZQoaAZoCWgPQwi2Zisv+cNKQJSGlFKUaBVN6ANoFkdAd/gA/LTx5XV9lChoBmgJaA9DCCs1e6AVpktAlIaUUpRoFU3oA2gWR0B3+3cYZVGTdX2UKGgGaAloD0MI7pbkgF1LQECUhpRSlGgVTegDaBZHQHf8VbVz6rN1fZQoaAZoCWgPQwiTVRFuMto6QJSGlFKUaBVLumgWR0B3/Xvd/J/5dX2UKGgGaAloD0MIs7W+SGhrHMCUhpRSlGgVS9RoFkdAeAeGZ/kNnXV9lChoBmgJaA9DCIARNGYS5R9AlIaUUpRoFUvgaBZHQHgR9CZ4Oc51fZQoaAZoCWgPQwgGobyPozEgQJSGlFKUaBVLxGgWR0B4HxGCqZMMdX2UKGgGaAloD0MI0JhJ1As2QsCUhpRSlGgVTQcBaBZHQHghp3kgfU51fZQoaAZoCWgPQwihgy7h0Mc1wJSGlFKUaBVL52gWR0B4J7igkC3gdX2UKGgGaAloD0MI/82LE18FIsCUhpRSlGgVTegDaBZHQHgptAkcCHR1fZQoaAZoCWgPQwhmh/iHLc9FwJSGlFKUaBVLcmgWR0B4LFeSjgyedX2UKGgGaAloD0MIQde+gF7OXECUhpRSlGgVTegDaBZHQHgs243FUAF1fZQoaAZoCWgPQwjBq+XOTL5RwJSGlFKUaBVL+mgWR0B4MTFZPl+3dX2UKGgGaAloD0MIQx1WuOUDY8CUhpRSlGgVTWgBaBZHQHg83vx6OYJ1fZQoaAZoCWgPQwjl795RY+YzQJSGlFKUaBVNTQFoFkdAeEEyxRl6JXV9lChoBmgJaA9DCBTtKqT8e1ZAlIaUUpRoFU3oA2gWR0B4SjW6K+BZdX2UKGgGaAloD0MIiBIteTwtGUCUhpRSlGgVS/loFkdAeFRojv/ipHV9lChoBmgJaA9DCLKeWn11yTbAlIaUUpRoFUv8aBZHQHhXacqe9SN1fZQoaAZoCWgPQwh6/rRRnd4mwJSGlFKUaBVL6WgWR0B4WJzXBguzdX2UKGgGaAloD0MIcuDVcufeasCUhpRSlGgVTYMDaBZHQHhsQuqWC3B1fZQoaAZoCWgPQwidSgaAKshIwJSGlFKUaBVLymgWR0B4bFq/M4cWdX2UKGgGaAloD0MIuynltRLuMECUhpRSlGgVTTABaBZHQHhs/+Kjzqd1fZQoaAZoCWgPQwia0vpbAmAzwJSGlFKUaBVL62gWR0B4fQTAWSEEdX2UKGgGaAloD0MIpPrOL0ocSkCUhpRSlGgVTWUBaBZHQHh9ysCDEm91fZQoaAZoCWgPQwiv6UFBqeFlwJSGlFKUaBVNmwFoFkdAeIQYyfthNXV9lChoBmgJaA9DCFteud42izZAlIaUUpRoFUt9aBZHQHiIlVLi++N1fZQoaAZoCWgPQwhlU67wLjc0QJSGlFKUaBVNEwFoFkdAeJQvze40/HV9lChoBmgJaA9DCFMGDmjpGlbAlIaUUpRoFU06AWgWR0B4mjWwu/UOdX2UKGgGaAloD0MIm3EaogoLPUCUhpRSlGgVS5RoFkdAeKbg8r7O3XV9lChoBmgJaA9DCHEBaJQusFBAlIaUUpRoFU3oA2gWR0B4qXkkrwvydX2UKGgGaAloD0MIBTV8C+vmLcCUhpRSlGgVTR4BaBZHQHiuMKCxu891fZQoaAZoCWgPQwiY32ky4+0WQJSGlFKUaBVLfWgWR0B4smjafzz3dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 70,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b3d7f9dbed85bae2a9bc632964ada6e6dbceb7f306ac10e3e946b578f367bb9
|
3 |
+
size 84829
|
ppo-LunarLander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47242c462ac2ed4add6c5c9ed0f427fb8b8b643e871d33ba6d9d5d0963d45a85
|
3 |
+
size 43201
|
ppo-LunarLander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:117187f12a33fb61e7054ee1705ef354971ef9d59294b5fc1dfada739218e970
|
3 |
+
size 273995
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -130.75245352408092, "std_reward": 14.34904018867286, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T00:27:20.634288"}
|