pixeldoggo
commited on
Push agent to the Hub
Browse files- README.md +51 -0
- model.pt +3 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- LunarLander-v2
|
4 |
+
- ppo
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- custom-implementation
|
8 |
+
- deep-rl-course
|
9 |
+
model-index:
|
10 |
+
- name: PPO
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: reinforcement-learning
|
14 |
+
name: reinforcement-learning
|
15 |
+
dataset:
|
16 |
+
name: LunarLander-v2
|
17 |
+
type: LunarLander-v2
|
18 |
+
metrics:
|
19 |
+
- type: mean_reward
|
20 |
+
value: 54.42 +/- 114.62
|
21 |
+
name: mean_reward
|
22 |
+
verified: false
|
23 |
+
---
|
24 |
+
|
25 |
+
# PPO Agent Playing LunarLander-v2
|
26 |
+
|
27 |
+
This is a trained model of a PPO agent playing LunarLander-v2.
|
28 |
+
|
29 |
+
# Hyperparameters
|
30 |
+
```python
|
31 |
+
{'batch_size': 512
|
32 |
+
'learning_rate': 0.00025
|
33 |
+
'gamma': 0.99
|
34 |
+
'seed': 42
|
35 |
+
'device': 'cuda'
|
36 |
+
'ent_coef': 0.01
|
37 |
+
'clip_coef': 0.2
|
38 |
+
'clip_vloss': True
|
39 |
+
'vf_coef': 0.5
|
40 |
+
'max_grad_norm': 0.5
|
41 |
+
'target_kl': None
|
42 |
+
'num_envs': 4
|
43 |
+
'num_steps': 128
|
44 |
+
'anneal_lr': True
|
45 |
+
'num_minibatches': 4
|
46 |
+
'update_epochs': 4
|
47 |
+
'norm_adv': True
|
48 |
+
'gae_lambda': 0.95
|
49 |
+
'env_id': 'LunarLander-v2'}
|
50 |
+
```
|
51 |
+
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be3cd01a6fc41e74024d884871d7ecd42e5f78c5b4d7a36646e26a52aae111a6
|
3 |
+
size 43026
|
replay.mp4
ADDED
Binary file (109 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"env_id": "LunarLander-v2", "mean_reward": 54.421640837474364, "std_reward": 114.62386509067649, "n_evaluation_episodes": 10, "eval_datetime": "2024-11-15T19:26:17.794294"}
|