pjarbas312 commited on
Commit
e836285
·
1 Parent(s): 10fa5b2

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 260.06 +/- 30.94
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7b87970d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7b87970dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7b87970e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7b87970ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f7b87970f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f7b87974050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7b879740e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7b87974170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7b87974200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7b87974290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7b87974320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7b879cb1e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 917504, "_total_timesteps": 900000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651767510.0160627, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBWSr5kJEE+ea9GPs2dXr7d/Qs7AEkPPgAAAAAAAAAAkDJQvi5t5Lymh4u76jUkukVPTz6NPPc6AACAPwAAgD8a85E+6iqtP6llNj/mDhO/1QhOPs21ID4AAAAAAAAAAHp3GT6j1BY9ouPGvrS5R75gau29GafDOgAAAAAAAAAA8/Epvuh9k7wmO8S9HohmvAb4AD4u4zc9AACAPwAAgD/NgXY+J2HsPvJCab7VXfq+iPeaPurqVb4AAAAAAAAAAC1zAr4p3yQ90VquPVN2IL5b+4O7Ay9CPQAAAAAAAAAAhrRAPig7iT7Juwq/owWvvviI1T0SEp++AAAAAAAAAAAN5Zm9CvxMP1e4DL5CECG/r8y6vaZi/ToAAAAAAAAAAI0+UL5Iiam8aB4ePPOSI71PixU+ug0BPgAAgD8AAAAAmje7PGYxtT8mdQ8/a3REPAMUcLyQH2K8AAAAAAAAAACASG4+Ew9RPwptlj4jnBG/MsnFPoE0Pz4AAAAAAAAAAK2kZ758IIk+3oQoPj7D4L7/3ZS9w3hFPgAAAAAAAAAATbIpPdvpqD2aULC9qvJpvhleGzxJl7+9AAAAAAAAAACab1M+3XkTPwoQ/715b7e+CJKNPumgy70AAAAAAAAAAIahoL6RVIs/noYKv8XuSL+gF5W+m7ZYvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.01944888888888885, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQNmUK3zGcUCUhpRSlIwBbJRL6owBdJRHQJux0Pe54GF1fZQoaAZoCWgPQwiPGhNi7vByQJSGlFKUaBVL7GgWR0CbsohAGB4EdX2UKGgGaAloD0MI6IU7F4ZYc0CUhpRSlGgVS+poFkdAm7KThxYJV3V9lChoBmgJaA9DCEURUrezy3BAlIaUUpRoFUvPaBZHQJuzdEiMYMx1fZQoaAZoCWgPQwhlwi/180xyQJSGlFKUaBVL9mgWR0Cbtf3Td+G5dX2UKGgGaAloD0MIxEKtad6acUCUhpRSlGgVS7loFkdAm7X+lGgBcXV9lChoBmgJaA9DCEMAcOwZ0HJAlIaUUpRoFUv8aBZHQJu2L9qDbrV1fZQoaAZoCWgPQwietHBZxWhwQJSGlFKUaBVLo2gWR0CbtsVmSQo1dX2UKGgGaAloD0MIuqC+Zc6OcECUhpRSlGgVS91oFkdAm7dnJPqLTHV9lChoBmgJaA9DCLe3W5JDhXJAlIaUUpRoFUvlaBZHQJu4YKLKmsN1fZQoaAZoCWgPQwjQ1sHBHohwQJSGlFKUaBVLtGgWR0CbuI8m8dxRdX2UKGgGaAloD0MIwoh9AuiucUCUhpRSlGgVS8JoFkdAm7iifthNNHV9lChoBmgJaA9DCDYiGAfXBnFAlIaUUpRoFUv7aBZHQJu4s85jpcJ1fZQoaAZoCWgPQwhZEwt8xatwQJSGlFKUaBVLrWgWR0CbuQKZ2IO6dX2UKGgGaAloD0MIWJBmLBomc0CUhpRSlGgVS+1oFkdAm7lGDHwPRXV9lChoBmgJaA9DCATI0LEDjW9AlIaUUpRoFUvAaBZHQJu5tKzzErJ1fZQoaAZoCWgPQwiQ2O4eIJlyQJSGlFKUaBVLsGgWR0CbugEJSiuddX2UKGgGaAloD0MIbcg/M0g2dECUhpRSlGgVTT4BaBZHQJu7nnZCfHx1fZQoaAZoCWgPQwjnOo201JtuQJSGlFKUaBVLv2gWR0CbvP9ph4MXdX2UKGgGaAloD0MIK/htiDFJcECUhpRSlGgVS8RoFkdAm70x02cawXV9lChoBmgJaA9DCOZZSSu+8TZAlIaUUpRoFUuFaBZHQJu+MG1QZXN1fZQoaAZoCWgPQwgczZGVX99wQJSGlFKUaBVL1WgWR0Cbvr4KQaJidX2UKGgGaAloD0MIs2Dij6LccUCUhpRSlGgVTQYBaBZHQJvAMDyOJch1fZQoaAZoCWgPQwhhqS7g5XtvQJSGlFKUaBVLz2gWR0CbwJF7Uoa2dX2UKGgGaAloD0MIzZGVX4ZebkCUhpRSlGgVS9RoFkdAm8DW/JvHcXV9lChoBmgJaA9DCBgJbTmXZ3BAlIaUUpRoFUvNaBZHQJvBzhVENON1fZQoaAZoCWgPQwhTP28qkudwQJSGlFKUaBVL9GgWR0Cbwdpb2USqdX2UKGgGaAloD0MIbcfUXZlGcECUhpRSlGgVS+poFkdAm8IsgEEDAHV9lChoBmgJaA9DCEkrvqFwjHFAlIaUUpRoFUuyaBZHQJvC5DBuXNV1fZQoaAZoCWgPQwiFlnX/2FBxQJSGlFKUaBVNFgFoFkdAm8Nsjmjj73V9lChoBmgJaA9DCLjlIympPHJAlIaUUpRoFU0EAWgWR0CbxGL5ylvZdX2UKGgGaAloD0MI31D4bB3dXkCUhpRSlGgVTegDaBZHQJvE0BGQSzx1fZQoaAZoCWgPQwhS0Vj7+zFxQJSGlFKUaBVLwGgWR0CbxPY+jdpJdX2UKGgGaAloD0MIn8ppT8nfcECUhpRSlGgVS8toFkdAm8ZN8Z1mrnV9lChoBmgJaA9DCPpCyHk/5XFAlIaUUpRoFUvuaBZHQJvGtO6/Zdx1fZQoaAZoCWgPQwhJL2r3K69uQJSGlFKUaBVLvmgWR0CbyCOKO1fFdX2UKGgGaAloD0MIdLaA0HrNbUCUhpRSlGgVS9JoFkdAm8hJ/5LytnV9lChoBmgJaA9DCPCJdap8SnFAlIaUUpRoFUv2aBZHQJvIXgdfb9J1fZQoaAZoCWgPQwjjGwqfbVlxQJSGlFKUaBVLz2gWR0CbyIG0eEIxdX2UKGgGaAloD0MIiIOEKB8xcUCUhpRSlGgVS8JoFkdAm8qVmOEM9nV9lChoBmgJaA9DCHLg1XJnO3FAlIaUUpRoFUvraBZHQJvKq7L+xW11fZQoaAZoCWgPQwghkiHH1nBwQJSGlFKUaBVL5GgWR0CbyrZiNKh+dX2UKGgGaAloD0MIFMstrUb9cUCUhpRSlGgVS/VoFkdAm8r90NjLCHV9lChoBmgJaA9DCIpVgzC3QVhAlIaUUpRoFU3oA2gWR0Cby/TJQtSRdX2UKGgGaAloD0MIzEHQ0eq9cUCUhpRSlGgVS/VoFkdAm8v2Z3LV4HV9lChoBmgJaA9DCKA01CjkB3JAlIaUUpRoFUvdaBZHQJvMqMKkVN51fZQoaAZoCWgPQwgkgJvFi9dBQJSGlFKUaBVLiGgWR0CbzO72tdRjdX2UKGgGaAloD0MIUigLX98ycECUhpRSlGgVS9doFkdAm85CX2M85nV9lChoBmgJaA9DCImYEkm06XBAlIaUUpRoFUu8aBZHQJvPEAvL5h11fZQoaAZoCWgPQwgx0ovafXFwQJSGlFKUaBVLw2gWR0CbzytnPE88dX2UKGgGaAloD0MIDK8kea6lckCUhpRSlGgVS8doFkdAm889mDlHSXV9lChoBmgJaA9DCGB15EiniHNAlIaUUpRoFU0AAWgWR0Cbz1ipNsWPdX2UKGgGaAloD0MIB9Fa0aZIc0CUhpRSlGgVTSoBaBZHQJvPaM5wOvt1fZQoaAZoCWgPQwjmzkwwnJ9JQJSGlFKUaBVLYmgWR0Cbz/dGRV6vdX2UKGgGaAloD0MI9kIB20HHb0CUhpRSlGgVS8hoFkdAm9Gk+5e7c3V9lChoBmgJaA9DCDo8hPGTOnBAlIaUUpRoFUvKaBZHQJvSua6STyJ1fZQoaAZoCWgPQwjXNO84BcVwQJSGlFKUaBVL8GgWR0Cb0rqYJE6UdX2UKGgGaAloD0MIkIMSZtrncUCUhpRSlGgVTSIBaBZHQJvUnbAUL2J1fZQoaAZoCWgPQwiZDTLJiCtyQJSGlFKUaBVNNgFoFkdAm9Vpx3mmtXV9lChoBmgJaA9DCP922a/7e3FAlIaUUpRoFUvQaBZHQJvVmiGnGbV1fZQoaAZoCWgPQwjs3orEBF1wQJSGlFKUaBVLt2gWR0Cb1nposZpBdX2UKGgGaAloD0MI/b5/8+LdcUCUhpRSlGgVTRUBaBZHQJvWrKDCgsd1fZQoaAZoCWgPQwiRZFbvsAdzQJSGlFKUaBVL2WgWR0Cb1tsZHd43dX2UKGgGaAloD0MIprqAlxnVb0CUhpRSlGgVS91oFkdAm9coS+QEIXV9lChoBmgJaA9DCKvRqwFKMHJAlIaUUpRoFUvmaBZHQJvXMZ2pyZN1fZQoaAZoCWgPQwiLOJ1ka81wQJSGlFKUaBVL52gWR0Cb149sJpnIdX2UKGgGaAloD0MIWwacpWSbbECUhpRSlGgVS/ZoFkdAm9fs5XEIgXV9lChoBmgJaA9DCA+AuKuX8nFAlIaUUpRoFUvBaBZHQJvZoiJO32F1fZQoaAZoCWgPQwgOFk7SfJ9yQJSGlFKUaBVLz2gWR0Cb2ir+o99udX2UKGgGaAloD0MIn8iTpGugbkCUhpRSlGgVS/VoFkdAm9qAQYk3THV9lChoBmgJaA9DCDEMWHKV02JAlIaUUpRoFU3oA2gWR0Cb3AqM3qA0dX2UKGgGaAloD0MItHQF2wjrbUCUhpRSlGgVS8FoFkdAm9yHn+yZ8nV9lChoBmgJaA9DCATltn1PJHFAlIaUUpRoFUvyaBZHQJvdV//echF1fZQoaAZoCWgPQwjE0OrkjGVvQJSGlFKUaBVLxmgWR0Cb3Y60Y0l7dX2UKGgGaAloD0MIEmkbf+LOcECUhpRSlGgVS8RoFkdAm92vVRUFS3V9lChoBmgJaA9DCAeynlr93HJAlIaUUpRoFUvwaBZHQJveAOkLx7R1fZQoaAZoCWgPQwhF8L+V7OJxQJSGlFKUaBVLxGgWR0Cb3iD+irT6dX2UKGgGaAloD0MIzNJOzaWxcECUhpRSlGgVS7toFkdAm96Fk+X7cnV9lChoBmgJaA9DCB4zUBk/jXJAlIaUUpRoFUvTaBZHQJveo6vJRwZ1fZQoaAZoCWgPQwgjS+ZYnoVyQJSGlFKUaBVL7mgWR0Cb3ynBciW3dX2UKGgGaAloD0MIQpWaPRDwcECUhpRSlGgVS8ZoFkdAm+CAvQF9r3V9lChoBmgJaA9DCD4/jBCe53JAlIaUUpRoFU0LAWgWR0Cb4MsE7nxKdX2UKGgGaAloD0MIUkgyq/fhbkCUhpRSlGgVS8RoFkdAm+Dk9yLhrHV9lChoBmgJaA9DCAfPhCYJUHFAlIaUUpRoFUvJaBZHQJvhWxkd3jd1fZQoaAZoCWgPQwiIvVDAdqw/QJSGlFKUaBVLhWgWR0Cb4nOwgTysdX2UKGgGaAloD0MIUU8fgX8BckCUhpRSlGgVS99oFkdAm+OGTC+De3V9lChoBmgJaA9DCPZdEfzvYHBAlIaUUpRoFUvYaBZHQJvjyYmb9ZR1fZQoaAZoCWgPQwhklGdeTsFyQJSGlFKUaBVLw2gWR0Cb5DCwKSgXdX2UKGgGaAloD0MIlQ9B1Whnb0CUhpRSlGgVS79oFkdAm+UHoTwlSnV9lChoBmgJaA9DCDGx+bh213FAlIaUUpRoFUvzaBZHQJvl3tXxOL11fZQoaAZoCWgPQwiRCfg1kr5vQJSGlFKUaBVL3GgWR0Cb5kSJ0nw5dX2UKGgGaAloD0MIoRLXMW5UcECUhpRSlGgVS/xoFkdAm+a/Z7HAAXV9lChoBmgJaA9DCMDrM2f9+m9AlIaUUpRoFUuzaBZHQJvnRS0jTrp1fZQoaAZoCWgPQwgdqinJuh9xQJSGlFKUaBVNJAFoFkdAm+edI065oXV9lChoBmgJaA9DCEcCDTZ1RFtAlIaUUpRoFU3oA2gWR0Cb58NIsiB5dX2UKGgGaAloD0MIexaE8r4ec0CUhpRSlGgVS8RoFkdAm+iFeKKpDXV9lChoBmgJaA9DCPmBqzzBVnJAlIaUUpRoFUvfaBZHQJvo8ZvUBn11fZQoaAZoCWgPQwifPZepyTBwQJSGlFKUaBVLsWgWR0Cb6PvAoG6gdX2UKGgGaAloD0MIvTRFgJMvcECUhpRSlGgVS+xoFkdAm+j78FY+0XV9lChoBmgJaA9DCAXc8/wpKXJAlIaUUpRoFUuvaBZHQJvqD6VMVUN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec697ee72e6ee7672d1da31d8b9b593955dd42a52552141b7e00e77ea3cefb3e
3
+ size 143997
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7b87970d40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7b87970dd0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7b87970e60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7b87970ef0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7b87970f80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7b87974050>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7b879740e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7b87974170>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7b87974200>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7b87974290>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7b87974320>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f7b879cb1e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 917504,
46
+ "_total_timesteps": 900000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651767510.0160627,
51
+ "learning_rate": 0.001,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBWSr5kJEE+ea9GPs2dXr7d/Qs7AEkPPgAAAAAAAAAAkDJQvi5t5Lymh4u76jUkukVPTz6NPPc6AACAPwAAgD8a85E+6iqtP6llNj/mDhO/1QhOPs21ID4AAAAAAAAAAHp3GT6j1BY9ouPGvrS5R75gau29GafDOgAAAAAAAAAA8/Epvuh9k7wmO8S9HohmvAb4AD4u4zc9AACAPwAAgD/NgXY+J2HsPvJCab7VXfq+iPeaPurqVb4AAAAAAAAAAC1zAr4p3yQ90VquPVN2IL5b+4O7Ay9CPQAAAAAAAAAAhrRAPig7iT7Juwq/owWvvviI1T0SEp++AAAAAAAAAAAN5Zm9CvxMP1e4DL5CECG/r8y6vaZi/ToAAAAAAAAAAI0+UL5Iiam8aB4ePPOSI71PixU+ug0BPgAAgD8AAAAAmje7PGYxtT8mdQ8/a3REPAMUcLyQH2K8AAAAAAAAAACASG4+Ew9RPwptlj4jnBG/MsnFPoE0Pz4AAAAAAAAAAK2kZ758IIk+3oQoPj7D4L7/3ZS9w3hFPgAAAAAAAAAATbIpPdvpqD2aULC9qvJpvhleGzxJl7+9AAAAAAAAAACab1M+3XkTPwoQ/715b7e+CJKNPumgy70AAAAAAAAAAIahoL6RVIs/noYKv8XuSL+gF5W+m7ZYvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.01944888888888885,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQNmUK3zGcUCUhpRSlIwBbJRL6owBdJRHQJux0Pe54GF1fZQoaAZoCWgPQwiPGhNi7vByQJSGlFKUaBVL7GgWR0CbsohAGB4EdX2UKGgGaAloD0MI6IU7F4ZYc0CUhpRSlGgVS+poFkdAm7KThxYJV3V9lChoBmgJaA9DCEURUrezy3BAlIaUUpRoFUvPaBZHQJuzdEiMYMx1fZQoaAZoCWgPQwhlwi/180xyQJSGlFKUaBVL9mgWR0Cbtf3Td+G5dX2UKGgGaAloD0MIxEKtad6acUCUhpRSlGgVS7loFkdAm7X+lGgBcXV9lChoBmgJaA9DCEMAcOwZ0HJAlIaUUpRoFUv8aBZHQJu2L9qDbrV1fZQoaAZoCWgPQwietHBZxWhwQJSGlFKUaBVLo2gWR0CbtsVmSQo1dX2UKGgGaAloD0MIuqC+Zc6OcECUhpRSlGgVS91oFkdAm7dnJPqLTHV9lChoBmgJaA9DCLe3W5JDhXJAlIaUUpRoFUvlaBZHQJu4YKLKmsN1fZQoaAZoCWgPQwjQ1sHBHohwQJSGlFKUaBVLtGgWR0CbuI8m8dxRdX2UKGgGaAloD0MIwoh9AuiucUCUhpRSlGgVS8JoFkdAm7iifthNNHV9lChoBmgJaA9DCDYiGAfXBnFAlIaUUpRoFUv7aBZHQJu4s85jpcJ1fZQoaAZoCWgPQwhZEwt8xatwQJSGlFKUaBVLrWgWR0CbuQKZ2IO6dX2UKGgGaAloD0MIWJBmLBomc0CUhpRSlGgVS+1oFkdAm7lGDHwPRXV9lChoBmgJaA9DCATI0LEDjW9AlIaUUpRoFUvAaBZHQJu5tKzzErJ1fZQoaAZoCWgPQwiQ2O4eIJlyQJSGlFKUaBVLsGgWR0CbugEJSiuddX2UKGgGaAloD0MIbcg/M0g2dECUhpRSlGgVTT4BaBZHQJu7nnZCfHx1fZQoaAZoCWgPQwjnOo201JtuQJSGlFKUaBVLv2gWR0CbvP9ph4MXdX2UKGgGaAloD0MIK/htiDFJcECUhpRSlGgVS8RoFkdAm70x02cawXV9lChoBmgJaA9DCOZZSSu+8TZAlIaUUpRoFUuFaBZHQJu+MG1QZXN1fZQoaAZoCWgPQwgczZGVX99wQJSGlFKUaBVL1WgWR0Cbvr4KQaJidX2UKGgGaAloD0MIs2Dij6LccUCUhpRSlGgVTQYBaBZHQJvAMDyOJch1fZQoaAZoCWgPQwhhqS7g5XtvQJSGlFKUaBVLz2gWR0CbwJF7Uoa2dX2UKGgGaAloD0MIzZGVX4ZebkCUhpRSlGgVS9RoFkdAm8DW/JvHcXV9lChoBmgJaA9DCBgJbTmXZ3BAlIaUUpRoFUvNaBZHQJvBzhVENON1fZQoaAZoCWgPQwhTP28qkudwQJSGlFKUaBVL9GgWR0Cbwdpb2USqdX2UKGgGaAloD0MIbcfUXZlGcECUhpRSlGgVS+poFkdAm8IsgEEDAHV9lChoBmgJaA9DCEkrvqFwjHFAlIaUUpRoFUuyaBZHQJvC5DBuXNV1fZQoaAZoCWgPQwiFlnX/2FBxQJSGlFKUaBVNFgFoFkdAm8Nsjmjj73V9lChoBmgJaA9DCLjlIympPHJAlIaUUpRoFU0EAWgWR0CbxGL5ylvZdX2UKGgGaAloD0MI31D4bB3dXkCUhpRSlGgVTegDaBZHQJvE0BGQSzx1fZQoaAZoCWgPQwhS0Vj7+zFxQJSGlFKUaBVLwGgWR0CbxPY+jdpJdX2UKGgGaAloD0MIn8ppT8nfcECUhpRSlGgVS8toFkdAm8ZN8Z1mrnV9lChoBmgJaA9DCPpCyHk/5XFAlIaUUpRoFUvuaBZHQJvGtO6/Zdx1fZQoaAZoCWgPQwhJL2r3K69uQJSGlFKUaBVLvmgWR0CbyCOKO1fFdX2UKGgGaAloD0MIdLaA0HrNbUCUhpRSlGgVS9JoFkdAm8hJ/5LytnV9lChoBmgJaA9DCPCJdap8SnFAlIaUUpRoFUv2aBZHQJvIXgdfb9J1fZQoaAZoCWgPQwjjGwqfbVlxQJSGlFKUaBVLz2gWR0CbyIG0eEIxdX2UKGgGaAloD0MIiIOEKB8xcUCUhpRSlGgVS8JoFkdAm8qVmOEM9nV9lChoBmgJaA9DCHLg1XJnO3FAlIaUUpRoFUvraBZHQJvKq7L+xW11fZQoaAZoCWgPQwghkiHH1nBwQJSGlFKUaBVL5GgWR0CbyrZiNKh+dX2UKGgGaAloD0MIFMstrUb9cUCUhpRSlGgVS/VoFkdAm8r90NjLCHV9lChoBmgJaA9DCIpVgzC3QVhAlIaUUpRoFU3oA2gWR0Cby/TJQtSRdX2UKGgGaAloD0MIzEHQ0eq9cUCUhpRSlGgVS/VoFkdAm8v2Z3LV4HV9lChoBmgJaA9DCKA01CjkB3JAlIaUUpRoFUvdaBZHQJvMqMKkVN51fZQoaAZoCWgPQwgkgJvFi9dBQJSGlFKUaBVLiGgWR0CbzO72tdRjdX2UKGgGaAloD0MIUigLX98ycECUhpRSlGgVS9doFkdAm85CX2M85nV9lChoBmgJaA9DCImYEkm06XBAlIaUUpRoFUu8aBZHQJvPEAvL5h11fZQoaAZoCWgPQwgx0ovafXFwQJSGlFKUaBVLw2gWR0CbzytnPE88dX2UKGgGaAloD0MIDK8kea6lckCUhpRSlGgVS8doFkdAm889mDlHSXV9lChoBmgJaA9DCGB15EiniHNAlIaUUpRoFU0AAWgWR0Cbz1ipNsWPdX2UKGgGaAloD0MIB9Fa0aZIc0CUhpRSlGgVTSoBaBZHQJvPaM5wOvt1fZQoaAZoCWgPQwjmzkwwnJ9JQJSGlFKUaBVLYmgWR0Cbz/dGRV6vdX2UKGgGaAloD0MI9kIB20HHb0CUhpRSlGgVS8hoFkdAm9Gk+5e7c3V9lChoBmgJaA9DCDo8hPGTOnBAlIaUUpRoFUvKaBZHQJvSua6STyJ1fZQoaAZoCWgPQwjXNO84BcVwQJSGlFKUaBVL8GgWR0Cb0rqYJE6UdX2UKGgGaAloD0MIkIMSZtrncUCUhpRSlGgVTSIBaBZHQJvUnbAUL2J1fZQoaAZoCWgPQwiZDTLJiCtyQJSGlFKUaBVNNgFoFkdAm9Vpx3mmtXV9lChoBmgJaA9DCP922a/7e3FAlIaUUpRoFUvQaBZHQJvVmiGnGbV1fZQoaAZoCWgPQwjs3orEBF1wQJSGlFKUaBVLt2gWR0Cb1nposZpBdX2UKGgGaAloD0MI/b5/8+LdcUCUhpRSlGgVTRUBaBZHQJvWrKDCgsd1fZQoaAZoCWgPQwiRZFbvsAdzQJSGlFKUaBVL2WgWR0Cb1tsZHd43dX2UKGgGaAloD0MIprqAlxnVb0CUhpRSlGgVS91oFkdAm9coS+QEIXV9lChoBmgJaA9DCKvRqwFKMHJAlIaUUpRoFUvmaBZHQJvXMZ2pyZN1fZQoaAZoCWgPQwiLOJ1ka81wQJSGlFKUaBVL52gWR0Cb149sJpnIdX2UKGgGaAloD0MIWwacpWSbbECUhpRSlGgVS/ZoFkdAm9fs5XEIgXV9lChoBmgJaA9DCA+AuKuX8nFAlIaUUpRoFUvBaBZHQJvZoiJO32F1fZQoaAZoCWgPQwgOFk7SfJ9yQJSGlFKUaBVLz2gWR0Cb2ir+o99udX2UKGgGaAloD0MIn8iTpGugbkCUhpRSlGgVS/VoFkdAm9qAQYk3THV9lChoBmgJaA9DCDEMWHKV02JAlIaUUpRoFU3oA2gWR0Cb3AqM3qA0dX2UKGgGaAloD0MItHQF2wjrbUCUhpRSlGgVS8FoFkdAm9yHn+yZ8nV9lChoBmgJaA9DCATltn1PJHFAlIaUUpRoFUvyaBZHQJvdV//echF1fZQoaAZoCWgPQwjE0OrkjGVvQJSGlFKUaBVLxmgWR0Cb3Y60Y0l7dX2UKGgGaAloD0MIEmkbf+LOcECUhpRSlGgVS8RoFkdAm92vVRUFS3V9lChoBmgJaA9DCAeynlr93HJAlIaUUpRoFUvwaBZHQJveAOkLx7R1fZQoaAZoCWgPQwhF8L+V7OJxQJSGlFKUaBVLxGgWR0Cb3iD+irT6dX2UKGgGaAloD0MIzNJOzaWxcECUhpRSlGgVS7toFkdAm96Fk+X7cnV9lChoBmgJaA9DCB4zUBk/jXJAlIaUUpRoFUvTaBZHQJveo6vJRwZ1fZQoaAZoCWgPQwgjS+ZYnoVyQJSGlFKUaBVL7mgWR0Cb3ynBciW3dX2UKGgGaAloD0MIQpWaPRDwcECUhpRSlGgVS8ZoFkdAm+CAvQF9r3V9lChoBmgJaA9DCD4/jBCe53JAlIaUUpRoFU0LAWgWR0Cb4MsE7nxKdX2UKGgGaAloD0MIUkgyq/fhbkCUhpRSlGgVS8RoFkdAm+Dk9yLhrHV9lChoBmgJaA9DCAfPhCYJUHFAlIaUUpRoFUvJaBZHQJvhWxkd3jd1fZQoaAZoCWgPQwiIvVDAdqw/QJSGlFKUaBVLhWgWR0Cb4nOwgTysdX2UKGgGaAloD0MIUU8fgX8BckCUhpRSlGgVS99oFkdAm+OGTC+De3V9lChoBmgJaA9DCPZdEfzvYHBAlIaUUpRoFUvYaBZHQJvjyYmb9ZR1fZQoaAZoCWgPQwhklGdeTsFyQJSGlFKUaBVLw2gWR0Cb5DCwKSgXdX2UKGgGaAloD0MIlQ9B1Whnb0CUhpRSlGgVS79oFkdAm+UHoTwlSnV9lChoBmgJaA9DCDGx+bh213FAlIaUUpRoFUvzaBZHQJvl3tXxOL11fZQoaAZoCWgPQwiRCfg1kr5vQJSGlFKUaBVL3GgWR0Cb5kSJ0nw5dX2UKGgGaAloD0MIoRLXMW5UcECUhpRSlGgVS/xoFkdAm+a/Z7HAAXV9lChoBmgJaA9DCMDrM2f9+m9AlIaUUpRoFUuzaBZHQJvnRS0jTrp1fZQoaAZoCWgPQwgdqinJuh9xQJSGlFKUaBVNJAFoFkdAm+edI065oXV9lChoBmgJaA9DCEcCDTZ1RFtAlIaUUpRoFU3oA2gWR0Cb58NIsiB5dX2UKGgGaAloD0MIexaE8r4ec0CUhpRSlGgVS8RoFkdAm+iFeKKpDXV9lChoBmgJaA9DCPmBqzzBVnJAlIaUUpRoFUvfaBZHQJvo8ZvUBn11fZQoaAZoCWgPQwifPZepyTBwQJSGlFKUaBVLsWgWR0Cb6PvAoG6gdX2UKGgGaAloD0MIvTRFgJMvcECUhpRSlGgVS+xoFkdAm+j78FY+0XV9lChoBmgJaA9DCAXc8/wpKXJAlIaUUpRoFUuvaBZHQJvqD6VMVUN1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 280,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6eed2101dd595b0bc60ea3fe3cb9c542891f6d11af2d614773d2242bc12ccdae
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cf1a920b467ac6d372292c52b914f33122d083e3066fcfe15fa7eab9b421ac7
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:276c1f5a48ff61e27652b40b7bcab7bacdbcd51e9b0a3546f1e2f14d4d4ef1e1
3
+ size 205856
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 260.05648923882944, "std_reward": 30.944730209797196, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T17:01:38.584811"}