pjarbas312
commited on
Commit
·
e836285
1
Parent(s):
10fa5b2
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 260.06 +/- 30.94
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7b87970d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7b87970dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7b87970e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7b87970ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f7b87970f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f7b87974050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7b879740e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7b87974170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7b87974200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7b87974290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7b87974320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7b879cb1e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 917504, "_total_timesteps": 900000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651767510.0160627, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBWSr5kJEE+ea9GPs2dXr7d/Qs7AEkPPgAAAAAAAAAAkDJQvi5t5Lymh4u76jUkukVPTz6NPPc6AACAPwAAgD8a85E+6iqtP6llNj/mDhO/1QhOPs21ID4AAAAAAAAAAHp3GT6j1BY9ouPGvrS5R75gau29GafDOgAAAAAAAAAA8/Epvuh9k7wmO8S9HohmvAb4AD4u4zc9AACAPwAAgD/NgXY+J2HsPvJCab7VXfq+iPeaPurqVb4AAAAAAAAAAC1zAr4p3yQ90VquPVN2IL5b+4O7Ay9CPQAAAAAAAAAAhrRAPig7iT7Juwq/owWvvviI1T0SEp++AAAAAAAAAAAN5Zm9CvxMP1e4DL5CECG/r8y6vaZi/ToAAAAAAAAAAI0+UL5Iiam8aB4ePPOSI71PixU+ug0BPgAAgD8AAAAAmje7PGYxtT8mdQ8/a3REPAMUcLyQH2K8AAAAAAAAAACASG4+Ew9RPwptlj4jnBG/MsnFPoE0Pz4AAAAAAAAAAK2kZ758IIk+3oQoPj7D4L7/3ZS9w3hFPgAAAAAAAAAATbIpPdvpqD2aULC9qvJpvhleGzxJl7+9AAAAAAAAAACab1M+3XkTPwoQ/715b7e+CJKNPumgy70AAAAAAAAAAIahoL6RVIs/noYKv8XuSL+gF5W+m7ZYvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.01944888888888885, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQNmUK3zGcUCUhpRSlIwBbJRL6owBdJRHQJux0Pe54GF1fZQoaAZoCWgPQwiPGhNi7vByQJSGlFKUaBVL7GgWR0CbsohAGB4EdX2UKGgGaAloD0MI6IU7F4ZYc0CUhpRSlGgVS+poFkdAm7KThxYJV3V9lChoBmgJaA9DCEURUrezy3BAlIaUUpRoFUvPaBZHQJuzdEiMYMx1fZQoaAZoCWgPQwhlwi/180xyQJSGlFKUaBVL9mgWR0Cbtf3Td+G5dX2UKGgGaAloD0MIxEKtad6acUCUhpRSlGgVS7loFkdAm7X+lGgBcXV9lChoBmgJaA9DCEMAcOwZ0HJAlIaUUpRoFUv8aBZHQJu2L9qDbrV1fZQoaAZoCWgPQwietHBZxWhwQJSGlFKUaBVLo2gWR0CbtsVmSQo1dX2UKGgGaAloD0MIuqC+Zc6OcECUhpRSlGgVS91oFkdAm7dnJPqLTHV9lChoBmgJaA9DCLe3W5JDhXJAlIaUUpRoFUvlaBZHQJu4YKLKmsN1fZQoaAZoCWgPQwjQ1sHBHohwQJSGlFKUaBVLtGgWR0CbuI8m8dxRdX2UKGgGaAloD0MIwoh9AuiucUCUhpRSlGgVS8JoFkdAm7iifthNNHV9lChoBmgJaA9DCDYiGAfXBnFAlIaUUpRoFUv7aBZHQJu4s85jpcJ1fZQoaAZoCWgPQwhZEwt8xatwQJSGlFKUaBVLrWgWR0CbuQKZ2IO6dX2UKGgGaAloD0MIWJBmLBomc0CUhpRSlGgVS+1oFkdAm7lGDHwPRXV9lChoBmgJaA9DCATI0LEDjW9AlIaUUpRoFUvAaBZHQJu5tKzzErJ1fZQoaAZoCWgPQwiQ2O4eIJlyQJSGlFKUaBVLsGgWR0CbugEJSiuddX2UKGgGaAloD0MIbcg/M0g2dECUhpRSlGgVTT4BaBZHQJu7nnZCfHx1fZQoaAZoCWgPQwjnOo201JtuQJSGlFKUaBVLv2gWR0CbvP9ph4MXdX2UKGgGaAloD0MIK/htiDFJcECUhpRSlGgVS8RoFkdAm70x02cawXV9lChoBmgJaA9DCOZZSSu+8TZAlIaUUpRoFUuFaBZHQJu+MG1QZXN1fZQoaAZoCWgPQwgczZGVX99wQJSGlFKUaBVL1WgWR0Cbvr4KQaJidX2UKGgGaAloD0MIs2Dij6LccUCUhpRSlGgVTQYBaBZHQJvAMDyOJch1fZQoaAZoCWgPQwhhqS7g5XtvQJSGlFKUaBVLz2gWR0CbwJF7Uoa2dX2UKGgGaAloD0MIzZGVX4ZebkCUhpRSlGgVS9RoFkdAm8DW/JvHcXV9lChoBmgJaA9DCBgJbTmXZ3BAlIaUUpRoFUvNaBZHQJvBzhVENON1fZQoaAZoCWgPQwhTP28qkudwQJSGlFKUaBVL9GgWR0Cbwdpb2USqdX2UKGgGaAloD0MIbcfUXZlGcECUhpRSlGgVS+poFkdAm8IsgEEDAHV9lChoBmgJaA9DCEkrvqFwjHFAlIaUUpRoFUuyaBZHQJvC5DBuXNV1fZQoaAZoCWgPQwiFlnX/2FBxQJSGlFKUaBVNFgFoFkdAm8Nsjmjj73V9lChoBmgJaA9DCLjlIympPHJAlIaUUpRoFU0EAWgWR0CbxGL5ylvZdX2UKGgGaAloD0MI31D4bB3dXkCUhpRSlGgVTegDaBZHQJvE0BGQSzx1fZQoaAZoCWgPQwhS0Vj7+zFxQJSGlFKUaBVLwGgWR0CbxPY+jdpJdX2UKGgGaAloD0MIn8ppT8nfcECUhpRSlGgVS8toFkdAm8ZN8Z1mrnV9lChoBmgJaA9DCPpCyHk/5XFAlIaUUpRoFUvuaBZHQJvGtO6/Zdx1fZQoaAZoCWgPQwhJL2r3K69uQJSGlFKUaBVLvmgWR0CbyCOKO1fFdX2UKGgGaAloD0MIdLaA0HrNbUCUhpRSlGgVS9JoFkdAm8hJ/5LytnV9lChoBmgJaA9DCPCJdap8SnFAlIaUUpRoFUv2aBZHQJvIXgdfb9J1fZQoaAZoCWgPQwjjGwqfbVlxQJSGlFKUaBVLz2gWR0CbyIG0eEIxdX2UKGgGaAloD0MIiIOEKB8xcUCUhpRSlGgVS8JoFkdAm8qVmOEM9nV9lChoBmgJaA9DCHLg1XJnO3FAlIaUUpRoFUvraBZHQJvKq7L+xW11fZQoaAZoCWgPQwghkiHH1nBwQJSGlFKUaBVL5GgWR0CbyrZiNKh+dX2UKGgGaAloD0MIFMstrUb9cUCUhpRSlGgVS/VoFkdAm8r90NjLCHV9lChoBmgJaA9DCIpVgzC3QVhAlIaUUpRoFU3oA2gWR0Cby/TJQtSRdX2UKGgGaAloD0MIzEHQ0eq9cUCUhpRSlGgVS/VoFkdAm8v2Z3LV4HV9lChoBmgJaA9DCKA01CjkB3JAlIaUUpRoFUvdaBZHQJvMqMKkVN51fZQoaAZoCWgPQwgkgJvFi9dBQJSGlFKUaBVLiGgWR0CbzO72tdRjdX2UKGgGaAloD0MIUigLX98ycECUhpRSlGgVS9doFkdAm85CX2M85nV9lChoBmgJaA9DCImYEkm06XBAlIaUUpRoFUu8aBZHQJvPEAvL5h11fZQoaAZoCWgPQwgx0ovafXFwQJSGlFKUaBVLw2gWR0CbzytnPE88dX2UKGgGaAloD0MIDK8kea6lckCUhpRSlGgVS8doFkdAm889mDlHSXV9lChoBmgJaA9DCGB15EiniHNAlIaUUpRoFU0AAWgWR0Cbz1ipNsWPdX2UKGgGaAloD0MIB9Fa0aZIc0CUhpRSlGgVTSoBaBZHQJvPaM5wOvt1fZQoaAZoCWgPQwjmzkwwnJ9JQJSGlFKUaBVLYmgWR0Cbz/dGRV6vdX2UKGgGaAloD0MI9kIB20HHb0CUhpRSlGgVS8hoFkdAm9Gk+5e7c3V9lChoBmgJaA9DCDo8hPGTOnBAlIaUUpRoFUvKaBZHQJvSua6STyJ1fZQoaAZoCWgPQwjXNO84BcVwQJSGlFKUaBVL8GgWR0Cb0rqYJE6UdX2UKGgGaAloD0MIkIMSZtrncUCUhpRSlGgVTSIBaBZHQJvUnbAUL2J1fZQoaAZoCWgPQwiZDTLJiCtyQJSGlFKUaBVNNgFoFkdAm9Vpx3mmtXV9lChoBmgJaA9DCP922a/7e3FAlIaUUpRoFUvQaBZHQJvVmiGnGbV1fZQoaAZoCWgPQwjs3orEBF1wQJSGlFKUaBVLt2gWR0Cb1nposZpBdX2UKGgGaAloD0MI/b5/8+LdcUCUhpRSlGgVTRUBaBZHQJvWrKDCgsd1fZQoaAZoCWgPQwiRZFbvsAdzQJSGlFKUaBVL2WgWR0Cb1tsZHd43dX2UKGgGaAloD0MIprqAlxnVb0CUhpRSlGgVS91oFkdAm9coS+QEIXV9lChoBmgJaA9DCKvRqwFKMHJAlIaUUpRoFUvmaBZHQJvXMZ2pyZN1fZQoaAZoCWgPQwiLOJ1ka81wQJSGlFKUaBVL52gWR0Cb149sJpnIdX2UKGgGaAloD0MIWwacpWSbbECUhpRSlGgVS/ZoFkdAm9fs5XEIgXV9lChoBmgJaA9DCA+AuKuX8nFAlIaUUpRoFUvBaBZHQJvZoiJO32F1fZQoaAZoCWgPQwgOFk7SfJ9yQJSGlFKUaBVLz2gWR0Cb2ir+o99udX2UKGgGaAloD0MIn8iTpGugbkCUhpRSlGgVS/VoFkdAm9qAQYk3THV9lChoBmgJaA9DCDEMWHKV02JAlIaUUpRoFU3oA2gWR0Cb3AqM3qA0dX2UKGgGaAloD0MItHQF2wjrbUCUhpRSlGgVS8FoFkdAm9yHn+yZ8nV9lChoBmgJaA9DCATltn1PJHFAlIaUUpRoFUvyaBZHQJvdV//echF1fZQoaAZoCWgPQwjE0OrkjGVvQJSGlFKUaBVLxmgWR0Cb3Y60Y0l7dX2UKGgGaAloD0MIEmkbf+LOcECUhpRSlGgVS8RoFkdAm92vVRUFS3V9lChoBmgJaA9DCAeynlr93HJAlIaUUpRoFUvwaBZHQJveAOkLx7R1fZQoaAZoCWgPQwhF8L+V7OJxQJSGlFKUaBVLxGgWR0Cb3iD+irT6dX2UKGgGaAloD0MIzNJOzaWxcECUhpRSlGgVS7toFkdAm96Fk+X7cnV9lChoBmgJaA9DCB4zUBk/jXJAlIaUUpRoFUvTaBZHQJveo6vJRwZ1fZQoaAZoCWgPQwgjS+ZYnoVyQJSGlFKUaBVL7mgWR0Cb3ynBciW3dX2UKGgGaAloD0MIQpWaPRDwcECUhpRSlGgVS8ZoFkdAm+CAvQF9r3V9lChoBmgJaA9DCD4/jBCe53JAlIaUUpRoFU0LAWgWR0Cb4MsE7nxKdX2UKGgGaAloD0MIUkgyq/fhbkCUhpRSlGgVS8RoFkdAm+Dk9yLhrHV9lChoBmgJaA9DCAfPhCYJUHFAlIaUUpRoFUvJaBZHQJvhWxkd3jd1fZQoaAZoCWgPQwiIvVDAdqw/QJSGlFKUaBVLhWgWR0Cb4nOwgTysdX2UKGgGaAloD0MIUU8fgX8BckCUhpRSlGgVS99oFkdAm+OGTC+De3V9lChoBmgJaA9DCPZdEfzvYHBAlIaUUpRoFUvYaBZHQJvjyYmb9ZR1fZQoaAZoCWgPQwhklGdeTsFyQJSGlFKUaBVLw2gWR0Cb5DCwKSgXdX2UKGgGaAloD0MIlQ9B1Whnb0CUhpRSlGgVS79oFkdAm+UHoTwlSnV9lChoBmgJaA9DCDGx+bh213FAlIaUUpRoFUvzaBZHQJvl3tXxOL11fZQoaAZoCWgPQwiRCfg1kr5vQJSGlFKUaBVL3GgWR0Cb5kSJ0nw5dX2UKGgGaAloD0MIoRLXMW5UcECUhpRSlGgVS/xoFkdAm+a/Z7HAAXV9lChoBmgJaA9DCMDrM2f9+m9AlIaUUpRoFUuzaBZHQJvnRS0jTrp1fZQoaAZoCWgPQwgdqinJuh9xQJSGlFKUaBVNJAFoFkdAm+edI065oXV9lChoBmgJaA9DCEcCDTZ1RFtAlIaUUpRoFU3oA2gWR0Cb58NIsiB5dX2UKGgGaAloD0MIexaE8r4ec0CUhpRSlGgVS8RoFkdAm+iFeKKpDXV9lChoBmgJaA9DCPmBqzzBVnJAlIaUUpRoFUvfaBZHQJvo8ZvUBn11fZQoaAZoCWgPQwifPZepyTBwQJSGlFKUaBVLsWgWR0Cb6PvAoG6gdX2UKGgGaAloD0MIvTRFgJMvcECUhpRSlGgVS+xoFkdAm+j78FY+0XV9lChoBmgJaA9DCAXc8/wpKXJAlIaUUpRoFUuvaBZHQJvqD6VMVUN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec697ee72e6ee7672d1da31d8b9b593955dd42a52552141b7e00e77ea3cefb3e
|
3 |
+
size 143997
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7b87970d40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7b87970dd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7b87970e60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7b87970ef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7b87970f80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7b87974050>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7b879740e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7b87974170>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7b87974200>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7b87974290>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7b87974320>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7b879cb1e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 917504,
|
46 |
+
"_total_timesteps": 900000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651767510.0160627,
|
51 |
+
"learning_rate": 0.001,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBWSr5kJEE+ea9GPs2dXr7d/Qs7AEkPPgAAAAAAAAAAkDJQvi5t5Lymh4u76jUkukVPTz6NPPc6AACAPwAAgD8a85E+6iqtP6llNj/mDhO/1QhOPs21ID4AAAAAAAAAAHp3GT6j1BY9ouPGvrS5R75gau29GafDOgAAAAAAAAAA8/Epvuh9k7wmO8S9HohmvAb4AD4u4zc9AACAPwAAgD/NgXY+J2HsPvJCab7VXfq+iPeaPurqVb4AAAAAAAAAAC1zAr4p3yQ90VquPVN2IL5b+4O7Ay9CPQAAAAAAAAAAhrRAPig7iT7Juwq/owWvvviI1T0SEp++AAAAAAAAAAAN5Zm9CvxMP1e4DL5CECG/r8y6vaZi/ToAAAAAAAAAAI0+UL5Iiam8aB4ePPOSI71PixU+ug0BPgAAgD8AAAAAmje7PGYxtT8mdQ8/a3REPAMUcLyQH2K8AAAAAAAAAACASG4+Ew9RPwptlj4jnBG/MsnFPoE0Pz4AAAAAAAAAAK2kZ758IIk+3oQoPj7D4L7/3ZS9w3hFPgAAAAAAAAAATbIpPdvpqD2aULC9qvJpvhleGzxJl7+9AAAAAAAAAACab1M+3XkTPwoQ/715b7e+CJKNPumgy70AAAAAAAAAAIahoL6RVIs/noYKv8XuSL+gF5W+m7ZYvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.01944888888888885,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQNmUK3zGcUCUhpRSlIwBbJRL6owBdJRHQJux0Pe54GF1fZQoaAZoCWgPQwiPGhNi7vByQJSGlFKUaBVL7GgWR0CbsohAGB4EdX2UKGgGaAloD0MI6IU7F4ZYc0CUhpRSlGgVS+poFkdAm7KThxYJV3V9lChoBmgJaA9DCEURUrezy3BAlIaUUpRoFUvPaBZHQJuzdEiMYMx1fZQoaAZoCWgPQwhlwi/180xyQJSGlFKUaBVL9mgWR0Cbtf3Td+G5dX2UKGgGaAloD0MIxEKtad6acUCUhpRSlGgVS7loFkdAm7X+lGgBcXV9lChoBmgJaA9DCEMAcOwZ0HJAlIaUUpRoFUv8aBZHQJu2L9qDbrV1fZQoaAZoCWgPQwietHBZxWhwQJSGlFKUaBVLo2gWR0CbtsVmSQo1dX2UKGgGaAloD0MIuqC+Zc6OcECUhpRSlGgVS91oFkdAm7dnJPqLTHV9lChoBmgJaA9DCLe3W5JDhXJAlIaUUpRoFUvlaBZHQJu4YKLKmsN1fZQoaAZoCWgPQwjQ1sHBHohwQJSGlFKUaBVLtGgWR0CbuI8m8dxRdX2UKGgGaAloD0MIwoh9AuiucUCUhpRSlGgVS8JoFkdAm7iifthNNHV9lChoBmgJaA9DCDYiGAfXBnFAlIaUUpRoFUv7aBZHQJu4s85jpcJ1fZQoaAZoCWgPQwhZEwt8xatwQJSGlFKUaBVLrWgWR0CbuQKZ2IO6dX2UKGgGaAloD0MIWJBmLBomc0CUhpRSlGgVS+1oFkdAm7lGDHwPRXV9lChoBmgJaA9DCATI0LEDjW9AlIaUUpRoFUvAaBZHQJu5tKzzErJ1fZQoaAZoCWgPQwiQ2O4eIJlyQJSGlFKUaBVLsGgWR0CbugEJSiuddX2UKGgGaAloD0MIbcg/M0g2dECUhpRSlGgVTT4BaBZHQJu7nnZCfHx1fZQoaAZoCWgPQwjnOo201JtuQJSGlFKUaBVLv2gWR0CbvP9ph4MXdX2UKGgGaAloD0MIK/htiDFJcECUhpRSlGgVS8RoFkdAm70x02cawXV9lChoBmgJaA9DCOZZSSu+8TZAlIaUUpRoFUuFaBZHQJu+MG1QZXN1fZQoaAZoCWgPQwgczZGVX99wQJSGlFKUaBVL1WgWR0Cbvr4KQaJidX2UKGgGaAloD0MIs2Dij6LccUCUhpRSlGgVTQYBaBZHQJvAMDyOJch1fZQoaAZoCWgPQwhhqS7g5XtvQJSGlFKUaBVLz2gWR0CbwJF7Uoa2dX2UKGgGaAloD0MIzZGVX4ZebkCUhpRSlGgVS9RoFkdAm8DW/JvHcXV9lChoBmgJaA9DCBgJbTmXZ3BAlIaUUpRoFUvNaBZHQJvBzhVENON1fZQoaAZoCWgPQwhTP28qkudwQJSGlFKUaBVL9GgWR0Cbwdpb2USqdX2UKGgGaAloD0MIbcfUXZlGcECUhpRSlGgVS+poFkdAm8IsgEEDAHV9lChoBmgJaA9DCEkrvqFwjHFAlIaUUpRoFUuyaBZHQJvC5DBuXNV1fZQoaAZoCWgPQwiFlnX/2FBxQJSGlFKUaBVNFgFoFkdAm8Nsjmjj73V9lChoBmgJaA9DCLjlIympPHJAlIaUUpRoFU0EAWgWR0CbxGL5ylvZdX2UKGgGaAloD0MI31D4bB3dXkCUhpRSlGgVTegDaBZHQJvE0BGQSzx1fZQoaAZoCWgPQwhS0Vj7+zFxQJSGlFKUaBVLwGgWR0CbxPY+jdpJdX2UKGgGaAloD0MIn8ppT8nfcECUhpRSlGgVS8toFkdAm8ZN8Z1mrnV9lChoBmgJaA9DCPpCyHk/5XFAlIaUUpRoFUvuaBZHQJvGtO6/Zdx1fZQoaAZoCWgPQwhJL2r3K69uQJSGlFKUaBVLvmgWR0CbyCOKO1fFdX2UKGgGaAloD0MIdLaA0HrNbUCUhpRSlGgVS9JoFkdAm8hJ/5LytnV9lChoBmgJaA9DCPCJdap8SnFAlIaUUpRoFUv2aBZHQJvIXgdfb9J1fZQoaAZoCWgPQwjjGwqfbVlxQJSGlFKUaBVLz2gWR0CbyIG0eEIxdX2UKGgGaAloD0MIiIOEKB8xcUCUhpRSlGgVS8JoFkdAm8qVmOEM9nV9lChoBmgJaA9DCHLg1XJnO3FAlIaUUpRoFUvraBZHQJvKq7L+xW11fZQoaAZoCWgPQwghkiHH1nBwQJSGlFKUaBVL5GgWR0CbyrZiNKh+dX2UKGgGaAloD0MIFMstrUb9cUCUhpRSlGgVS/VoFkdAm8r90NjLCHV9lChoBmgJaA9DCIpVgzC3QVhAlIaUUpRoFU3oA2gWR0Cby/TJQtSRdX2UKGgGaAloD0MIzEHQ0eq9cUCUhpRSlGgVS/VoFkdAm8v2Z3LV4HV9lChoBmgJaA9DCKA01CjkB3JAlIaUUpRoFUvdaBZHQJvMqMKkVN51fZQoaAZoCWgPQwgkgJvFi9dBQJSGlFKUaBVLiGgWR0CbzO72tdRjdX2UKGgGaAloD0MIUigLX98ycECUhpRSlGgVS9doFkdAm85CX2M85nV9lChoBmgJaA9DCImYEkm06XBAlIaUUpRoFUu8aBZHQJvPEAvL5h11fZQoaAZoCWgPQwgx0ovafXFwQJSGlFKUaBVLw2gWR0CbzytnPE88dX2UKGgGaAloD0MIDK8kea6lckCUhpRSlGgVS8doFkdAm889mDlHSXV9lChoBmgJaA9DCGB15EiniHNAlIaUUpRoFU0AAWgWR0Cbz1ipNsWPdX2UKGgGaAloD0MIB9Fa0aZIc0CUhpRSlGgVTSoBaBZHQJvPaM5wOvt1fZQoaAZoCWgPQwjmzkwwnJ9JQJSGlFKUaBVLYmgWR0Cbz/dGRV6vdX2UKGgGaAloD0MI9kIB20HHb0CUhpRSlGgVS8hoFkdAm9Gk+5e7c3V9lChoBmgJaA9DCDo8hPGTOnBAlIaUUpRoFUvKaBZHQJvSua6STyJ1fZQoaAZoCWgPQwjXNO84BcVwQJSGlFKUaBVL8GgWR0Cb0rqYJE6UdX2UKGgGaAloD0MIkIMSZtrncUCUhpRSlGgVTSIBaBZHQJvUnbAUL2J1fZQoaAZoCWgPQwiZDTLJiCtyQJSGlFKUaBVNNgFoFkdAm9Vpx3mmtXV9lChoBmgJaA9DCP922a/7e3FAlIaUUpRoFUvQaBZHQJvVmiGnGbV1fZQoaAZoCWgPQwjs3orEBF1wQJSGlFKUaBVLt2gWR0Cb1nposZpBdX2UKGgGaAloD0MI/b5/8+LdcUCUhpRSlGgVTRUBaBZHQJvWrKDCgsd1fZQoaAZoCWgPQwiRZFbvsAdzQJSGlFKUaBVL2WgWR0Cb1tsZHd43dX2UKGgGaAloD0MIprqAlxnVb0CUhpRSlGgVS91oFkdAm9coS+QEIXV9lChoBmgJaA9DCKvRqwFKMHJAlIaUUpRoFUvmaBZHQJvXMZ2pyZN1fZQoaAZoCWgPQwiLOJ1ka81wQJSGlFKUaBVL52gWR0Cb149sJpnIdX2UKGgGaAloD0MIWwacpWSbbECUhpRSlGgVS/ZoFkdAm9fs5XEIgXV9lChoBmgJaA9DCA+AuKuX8nFAlIaUUpRoFUvBaBZHQJvZoiJO32F1fZQoaAZoCWgPQwgOFk7SfJ9yQJSGlFKUaBVLz2gWR0Cb2ir+o99udX2UKGgGaAloD0MIn8iTpGugbkCUhpRSlGgVS/VoFkdAm9qAQYk3THV9lChoBmgJaA9DCDEMWHKV02JAlIaUUpRoFU3oA2gWR0Cb3AqM3qA0dX2UKGgGaAloD0MItHQF2wjrbUCUhpRSlGgVS8FoFkdAm9yHn+yZ8nV9lChoBmgJaA9DCATltn1PJHFAlIaUUpRoFUvyaBZHQJvdV//echF1fZQoaAZoCWgPQwjE0OrkjGVvQJSGlFKUaBVLxmgWR0Cb3Y60Y0l7dX2UKGgGaAloD0MIEmkbf+LOcECUhpRSlGgVS8RoFkdAm92vVRUFS3V9lChoBmgJaA9DCAeynlr93HJAlIaUUpRoFUvwaBZHQJveAOkLx7R1fZQoaAZoCWgPQwhF8L+V7OJxQJSGlFKUaBVLxGgWR0Cb3iD+irT6dX2UKGgGaAloD0MIzNJOzaWxcECUhpRSlGgVS7toFkdAm96Fk+X7cnV9lChoBmgJaA9DCB4zUBk/jXJAlIaUUpRoFUvTaBZHQJveo6vJRwZ1fZQoaAZoCWgPQwgjS+ZYnoVyQJSGlFKUaBVL7mgWR0Cb3ynBciW3dX2UKGgGaAloD0MIQpWaPRDwcECUhpRSlGgVS8ZoFkdAm+CAvQF9r3V9lChoBmgJaA9DCD4/jBCe53JAlIaUUpRoFU0LAWgWR0Cb4MsE7nxKdX2UKGgGaAloD0MIUkgyq/fhbkCUhpRSlGgVS8RoFkdAm+Dk9yLhrHV9lChoBmgJaA9DCAfPhCYJUHFAlIaUUpRoFUvJaBZHQJvhWxkd3jd1fZQoaAZoCWgPQwiIvVDAdqw/QJSGlFKUaBVLhWgWR0Cb4nOwgTysdX2UKGgGaAloD0MIUU8fgX8BckCUhpRSlGgVS99oFkdAm+OGTC+De3V9lChoBmgJaA9DCPZdEfzvYHBAlIaUUpRoFUvYaBZHQJvjyYmb9ZR1fZQoaAZoCWgPQwhklGdeTsFyQJSGlFKUaBVLw2gWR0Cb5DCwKSgXdX2UKGgGaAloD0MIlQ9B1Whnb0CUhpRSlGgVS79oFkdAm+UHoTwlSnV9lChoBmgJaA9DCDGx+bh213FAlIaUUpRoFUvzaBZHQJvl3tXxOL11fZQoaAZoCWgPQwiRCfg1kr5vQJSGlFKUaBVL3GgWR0Cb5kSJ0nw5dX2UKGgGaAloD0MIoRLXMW5UcECUhpRSlGgVS/xoFkdAm+a/Z7HAAXV9lChoBmgJaA9DCMDrM2f9+m9AlIaUUpRoFUuzaBZHQJvnRS0jTrp1fZQoaAZoCWgPQwgdqinJuh9xQJSGlFKUaBVNJAFoFkdAm+edI065oXV9lChoBmgJaA9DCEcCDTZ1RFtAlIaUUpRoFU3oA2gWR0Cb58NIsiB5dX2UKGgGaAloD0MIexaE8r4ec0CUhpRSlGgVS8RoFkdAm+iFeKKpDXV9lChoBmgJaA9DCPmBqzzBVnJAlIaUUpRoFUvfaBZHQJvo8ZvUBn11fZQoaAZoCWgPQwifPZepyTBwQJSGlFKUaBVLsWgWR0Cb6PvAoG6gdX2UKGgGaAloD0MIvTRFgJMvcECUhpRSlGgVS+xoFkdAm+j78FY+0XV9lChoBmgJaA9DCAXc8/wpKXJAlIaUUpRoFUuvaBZHQJvqD6VMVUN1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 280,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6eed2101dd595b0bc60ea3fe3cb9c542891f6d11af2d614773d2242bc12ccdae
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cf1a920b467ac6d372292c52b914f33122d083e3066fcfe15fa7eab9b421ac7
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:276c1f5a48ff61e27652b40b7bcab7bacdbcd51e9b0a3546f1e2f14d4d4ef1e1
|
3 |
+
size 205856
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.05648923882944, "std_reward": 30.944730209797196, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T17:01:38.584811"}
|