pjfernan commited on
Commit
99bc799
1 Parent(s): 768c55f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 270.62 +/- 25.67
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f50f3605040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f50f36050d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f50f3605160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f50f36051f0>", "_build": "<function ActorCriticPolicy._build at 0x7f50f3605280>", "forward": "<function ActorCriticPolicy.forward at 0x7f50f3605310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f50f36053a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f50f3605430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f50f36054c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f50f3605550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f50f36055e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f50f3601510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1114112, "_total_timesteps": 1100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673302455104959485, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1IPT4V/04/MsP4u3YP3L76D9o9WwjZvQAAAAAAAAAAGoaxPY/eOrrSja+15Ou3NTDrzbq0L7G2AACAPwAAgD/A1/M95jOVPjoCRr2wj6K+q3I7PSuASb0AAAAAAAAAAGaL47zXf2E6TZnePDShKb75cHE9ye6JvgAAAAAAAIA/jSsbPrDuWz9g6Uc8OmTwvmy6lz0FDpW9AAAAAAAAAAAAGuU8ri7UPfpge77zsjS+yuemvV5w/rwAAAAAAAAAAKbURz5NDbk/spwpPy96nb5HH5g+hMedPgAAAAAAAAAABmsCvkkiaj88qEa9FgP8vuZnQL5Na+M9AAAAAAAAAACz/Fy9YZjrPaZGAr0z3Tu+e1AwPBKkPzwAAAAAAAAAAE28Br6+z4w/Ug0Kv4SaE7+8cci9hiWEvgAAAAAAAAAAM9EdPEjZj7q7U2I1nCtRMKVrJzsa2pK0AACAPwAAgD9AL6w90sXdPLkYS776ElC+VyWSvGl6g70AAAAAAAAAAABNfj2h/Uc+WyAAvrnYaL5tM7+8UIHePAAAAAAAAAAAmpGRu46Mp7wmkzG8WcRuPJicE74qnzw9AACAPwAAgD/NsVm9gzgnPetOpj3UXE++1AdFPIWJV70AAAAAAAAAAJpZA7pIN4m6gluWMprh8i6tvrs6KrsSswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.012829090909090901, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGArYDkaccECUhpRSlIwBbJRL8YwBdJRHQKDJEHE/B311fZQoaAZoCWgPQwjbiv1l99xvQJSGlFKUaBVNCgFoFkdAoMlOHBUJfXV9lChoBmgJaA9DCKkyjLuBWHNAlIaUUpRoFUvgaBZHQKDJ2z6ab4J1fZQoaAZoCWgPQwgKhQg4xEBwQJSGlFKUaBVNEgFoFkdAoMnzVUdaMnV9lChoBmgJaA9DCCZzLO/qiXFAlIaUUpRoFU0YAWgWR0Cgyn+BxxT9dX2UKGgGaAloD0MIm3PwTOhocUCUhpRSlGgVS/doFkdAoMrLFsHjZXV9lChoBmgJaA9DCLFOle9ZyHFAlIaUUpRoFU0GAWgWR0Cgyt1dxAB1dX2UKGgGaAloD0MIKJ1IMNU7cECUhpRSlGgVS95oFkdAoMsxs67ulXV9lChoBmgJaA9DCFMhHomXl3FAlIaUUpRoFU0aAWgWR0Cgy2v3SKFadX2UKGgGaAloD0MIsARSYtcscUCUhpRSlGgVTQYBaBZHQKDLzGhEjPh1fZQoaAZoCWgPQwj8OQX5GdJyQJSGlFKUaBVL9mgWR0Cgy/nNX5nEdX2UKGgGaAloD0MImIqNeR0kbkCUhpRSlGgVTTcBaBZHQKDMHFo+Ofd1fZQoaAZoCWgPQwjMCG8PwmxvQJSGlFKUaBVNDgFoFkdAoMxeCdz4lHV9lChoBmgJaA9DCJ7sZkY/em9AlIaUUpRoFUv+aBZHQKDMZbGm1pl1fZQoaAZoCWgPQwhKfVnaKUdwQJSGlFKUaBVNJAFoFkdAoMzNk+X7cnV9lChoBmgJaA9DCGfTEcCNznBAlIaUUpRoFU0NAWgWR0CgzNbQkX1rdX2UKGgGaAloD0MIEt4ehICSckCUhpRSlGgVTSYBaBZHQKDNSIO6NER1fZQoaAZoCWgPQwiLcJNR5S9zQJSGlFKUaBVNFgFoFkdAoM1TvPTodXV9lChoBmgJaA9DCGcqxCPxI3BAlIaUUpRoFU0GAWgWR0CgzaWx6fJ4dX2UKGgGaAloD0MIUmABTBluc0CUhpRSlGgVTQ0BaBZHQKDN0XKr7wd1fZQoaAZoCWgPQwieBgySfgpwQJSGlFKUaBVNAwFoFkdAoM412HLzPXV9lChoBmgJaA9DCLJnz2XqeXFAlIaUUpRoFU0GAWgWR0CgzvKQA+6idX2UKGgGaAloD0MIJ4V5j7MPc0CUhpRSlGgVTQABaBZHQKDPGnP3SKF1fZQoaAZoCWgPQwhYdVYL7EBuQJSGlFKUaBVNOQFoFkdAoM9o2hqTKXV9lChoBmgJaA9DCFw7URJSUnBAlIaUUpRoFUvoaBZHQKDPdsQd0aJ1fZQoaAZoCWgPQwhse7slefpwQJSGlFKUaBVL/WgWR0Cgz4CWNWELdX2UKGgGaAloD0MIIuLmVDKYcUCUhpRSlGgVTR0BaBZHQKDQOmYSg5B1fZQoaAZoCWgPQwjnbtdLk9xzQJSGlFKUaBVNHwFoFkdAoNCx4B3iaXV9lChoBmgJaA9DCIrKhjWVIXJAlIaUUpRoFU0pAWgWR0Cg0OYJE6T4dX2UKGgGaAloD0MITiUDQBX9b0CUhpRSlGgVTZABaBZHQKDQ9GFSKm91fZQoaAZoCWgPQwjcuTDSi1BvQJSGlFKUaBVNDQFoFkdAoND2HerMknV9lChoBmgJaA9DCL5LqUvGS29AlIaUUpRoFUv8aBZHQKDRQO4G2Th1fZQoaAZoCWgPQwii0oiZ/e1wQJSGlFKUaBVNMgFoFkdAoNFzGza9K3V9lChoBmgJaA9DCNKKbyi8pXNAlIaUUpRoFU0TAWgWR0Cg0YlO45LidX2UKGgGaAloD0MIUTBjClYdcECUhpRSlGgVS/hoFkdAoNGM2tMfzXV9lChoBmgJaA9DCJzexfuxynJAlIaUUpRoFUvxaBZHQKDRoCwr1/V1fZQoaAZoCWgPQwiy1eWUwD5yQJSGlFKUaBVNFgFoFkdAoNJxOBUaQ3V9lChoBmgJaA9DCNHno4x4zHJAlIaUUpRoFUv4aBZHQKDSrb3XZoR1fZQoaAZoCWgPQwjba0HvzQRzQJSGlFKUaBVNAAFoFkdAoNy6pWFN+XV9lChoBmgJaA9DCBiyutXzjXFAlIaUUpRoFUvyaBZHQKDcwzjWCmN1fZQoaAZoCWgPQwjzWDMyyN5wQJSGlFKUaBVNAAFoFkdAoN0CtxMnJHV9lChoBmgJaA9DCIHrihmh+nFAlIaUUpRoFU0XAWgWR0Cg3WG9YfW+dX2UKGgGaAloD0MIh4px/qbAckCUhpRSlGgVS+1oFkdAoN1mthd+onV9lChoBmgJaA9DCOTWpNuSDXBAlIaUUpRoFUvuaBZHQKDeBsolUqB1fZQoaAZoCWgPQwieKAmJtPhuQJSGlFKUaBVL/GgWR0Cg3hCvHLiddX2UKGgGaAloD0MI8DMuHIjTb0CUhpRSlGgVS/NoFkdAoN4q22G7BnV9lChoBmgJaA9DCFTE6SSbxXFAlIaUUpRoFUv1aBZHQKDeNh0hePd1fZQoaAZoCWgPQwjx8QnZeUhwQJSGlFKUaBVL82gWR0Cg3qmnfl6rdX2UKGgGaAloD0MIdSDrqVWnbUCUhpRSlGgVTQIBaBZHQKDerwLE1l51fZQoaAZoCWgPQwhHk4sxcBxxQJSGlFKUaBVL72gWR0Cg3rXMyJsPdX2UKGgGaAloD0MI9nr3xzvFckCUhpRSlGgVS/doFkdAoN7LJSzgM3V9lChoBmgJaA9DCKqCUUkdVm1AlIaUUpRoFU0WAWgWR0Cg3z+N1hb4dX2UKGgGaAloD0MIbagY528zbkCUhpRSlGgVS/xoFkdAoN/VCXyAhHV9lChoBmgJaA9DCMb9R6YDlXFAlIaUUpRoFUvwaBZHQKDgMbVjI7x1fZQoaAZoCWgPQwjNH9PatEJxQJSGlFKUaBVL72gWR0Cg4ILKvFFVdX2UKGgGaAloD0MI3uhjPqACb0CUhpRSlGgVTQQBaBZHQKDgke8PFvR1fZQoaAZoCWgPQwgG1QYnYvByQJSGlFKUaBVL+WgWR0Cg4ROiFj/ddX2UKGgGaAloD0MIDaX2Itrzb0CUhpRSlGgVS+poFkdAoOGB19v0iHV9lChoBmgJaA9DCH7+e/Dar21AlIaUUpRoFU0dAWgWR0Cg4a1Fx4pudX2UKGgGaAloD0MIluttM9XxcECUhpRSlGgVS/NoFkdAoOHLGvOhTXV9lChoBmgJaA9DCOVC5V8LV3JAlIaUUpRoFUv2aBZHQKDh4HkcS5B1fZQoaAZoCWgPQwihD5axIYpzQJSGlFKUaBVNDwFoFkdAoOIZB1LamHV9lChoBmgJaA9DCDaU2ouo/XJAlIaUUpRoFUvqaBZHQKDiLIikftB1fZQoaAZoCWgPQwjt72yPXgdwQJSGlFKUaBVNnQFoFkdAoOKdcv/R3XV9lChoBmgJaA9DCNE96xqt3XFAlIaUUpRoFU0QAWgWR0Cg4r0hmoR7dX2UKGgGaAloD0MIhgSMLu/ucECUhpRSlGgVS+VoFkdAoOLFTefqYHV9lChoBmgJaA9DCCcvMgG/NXJAlIaUUpRoFU0kAWgWR0Cg4vH8CPp7dX2UKGgGaAloD0MIGt6swfvicUCUhpRSlGgVTW0BaBZHQKDkNtx+8Xh1fZQoaAZoCWgPQwgkJxO3CulyQJSGlFKUaBVL/GgWR0Cg5FMOf/WEdX2UKGgGaAloD0MIGysxz8o3cECUhpRSlGgVTSEBaBZHQKDkrRNyo4x1fZQoaAZoCWgPQwgLem8MAYNxQJSGlFKUaBVNPAFoFkdAoOTDYChexHV9lChoBmgJaA9DCHC1TlwOQG9AlIaUUpRoFUvqaBZHQKDlHJ5E+gV1fZQoaAZoCWgPQwi3JXLBmTpxQJSGlFKUaBVNEQFoFkdAoOVddNWU8nV9lChoBmgJaA9DCMAhVKlZ1nNAlIaUUpRoFUvvaBZHQKDlYl41P311fZQoaAZoCWgPQwh3aFiMOkpvQJSGlFKUaBVL9GgWR0Cg5buJ+DvmdX2UKGgGaAloD0MIKbLWUGqbb0CUhpRSlGgVS+ZoFkdAoOXEyad+X3V9lChoBmgJaA9DCPiov16h8HFAlIaUUpRoFUv1aBZHQKDmHx6OYIB1fZQoaAZoCWgPQwjpDIy8bGhyQJSGlFKUaBVNEwFoFkdAoOYsbLlmvnV9lChoBmgJaA9DCOEkzR8Tt3FAlIaUUpRoFUvdaBZHQKDmaAOrhit1fZQoaAZoCWgPQwgrFr8pLPZwQJSGlFKUaBVNeQFoFkdAoOaPyAhB7nV9lChoBmgJaA9DCApNEkuKHHFAlIaUUpRoFU0ZAWgWR0Cg5zH3UQTVdX2UKGgGaAloD0MI4c/wZg2DbkCUhpRSlGgVTSgBaBZHQKDnR9m6Gxl1fZQoaAZoCWgPQwizCpsBbhRxQJSGlFKUaBVNKAFoFkdAoOembRWtEHV9lChoBmgJaA9DCOFh2jc3eHFAlIaUUpRoFUv0aBZHQKDoLYcNpdt1fZQoaAZoCWgPQwhzgctjzWdyQJSGlFKUaBVL4WgWR0Cg6DkhaC+UdX2UKGgGaAloD0MILNfbZmomc0CUhpRSlGgVS/loFkdAoOh+5QP7N3V9lChoBmgJaA9DCGPwMO2b5m1AlIaUUpRoFUvtaBZHQKDorvb48EF1fZQoaAZoCWgPQwiV8IRefzlxQJSGlFKUaBVNNwFoFkdAoOkJRoAXEnV9lChoBmgJaA9DCEhqoWSy3HBAlIaUUpRoFUvkaBZHQKDpB9itq591fZQoaAZoCWgPQwj8qfHSzVNxQJSGlFKUaBVL/mgWR0Cg6SRoysS1dX2UKGgGaAloD0MI6pJxjKSscECUhpRSlGgVTQkBaBZHQKDpSDkELYx1fZQoaAZoCWgPQwhuwr0yLxpzQJSGlFKUaBVL+WgWR0Cg6VedCmdidX2UKGgGaAloD0MIPsqICwDCcECUhpRSlGgVS/VoFkdAoOmNU+9rXXV9lChoBmgJaA9DCGLZzCEp2W9AlIaUUpRoFUvZaBZHQKDpkfbsWwh1fZQoaAZoCWgPQwj2YFJ8vIBxQJSGlFKUaBVL9WgWR0Cg6Zfoq0+ldX2UKGgGaAloD0MIfZbnwV1zcECUhpRSlGgVTScBaBZHQKDqe7QLNOd1fZQoaAZoCWgPQwikqgmi7l5xQJSGlFKUaBVL7GgWR0Cg6oytNi6QdX2UKGgGaAloD0MI6uv5miXwcUCUhpRSlGgVTQwBaBZHQKDq4llbu+h1fZQoaAZoCWgPQwhMF2L1hy5wQJSGlFKUaBVL42gWR0Cg60eQMhHLdX2UKGgGaAloD0MI+cCO/4JGbkCUhpRSlGgVTQ4BaBZHQKDrXZxJd0J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 364, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac28761327d761a4df2b0ac3a5f406e15568f845723c5a0a80a6d600f0a82122
3
+ size 147154
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f50f3605040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f50f36050d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f50f3605160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f50f36051f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f50f3605280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f50f3605310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f50f36053a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f50f3605430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f50f36054c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f50f3605550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f50f36055e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f50f3601510>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1114112,
46
+ "_total_timesteps": 1100000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673302455104959485,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1IPT4V/04/MsP4u3YP3L76D9o9WwjZvQAAAAAAAAAAGoaxPY/eOrrSja+15Ou3NTDrzbq0L7G2AACAPwAAgD/A1/M95jOVPjoCRr2wj6K+q3I7PSuASb0AAAAAAAAAAGaL47zXf2E6TZnePDShKb75cHE9ye6JvgAAAAAAAIA/jSsbPrDuWz9g6Uc8OmTwvmy6lz0FDpW9AAAAAAAAAAAAGuU8ri7UPfpge77zsjS+yuemvV5w/rwAAAAAAAAAAKbURz5NDbk/spwpPy96nb5HH5g+hMedPgAAAAAAAAAABmsCvkkiaj88qEa9FgP8vuZnQL5Na+M9AAAAAAAAAACz/Fy9YZjrPaZGAr0z3Tu+e1AwPBKkPzwAAAAAAAAAAE28Br6+z4w/Ug0Kv4SaE7+8cci9hiWEvgAAAAAAAAAAM9EdPEjZj7q7U2I1nCtRMKVrJzsa2pK0AACAPwAAgD9AL6w90sXdPLkYS776ElC+VyWSvGl6g70AAAAAAAAAAABNfj2h/Uc+WyAAvrnYaL5tM7+8UIHePAAAAAAAAAAAmpGRu46Mp7wmkzG8WcRuPJicE74qnzw9AACAPwAAgD/NsVm9gzgnPetOpj3UXE++1AdFPIWJV70AAAAAAAAAAJpZA7pIN4m6gluWMprh8i6tvrs6KrsSswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.012829090909090901,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVUBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGArYDkaccECUhpRSlIwBbJRL8YwBdJRHQKDJEHE/B311fZQoaAZoCWgPQwjbiv1l99xvQJSGlFKUaBVNCgFoFkdAoMlOHBUJfXV9lChoBmgJaA9DCKkyjLuBWHNAlIaUUpRoFUvgaBZHQKDJ2z6ab4J1fZQoaAZoCWgPQwgKhQg4xEBwQJSGlFKUaBVNEgFoFkdAoMnzVUdaMnV9lChoBmgJaA9DCCZzLO/qiXFAlIaUUpRoFU0YAWgWR0Cgyn+BxxT9dX2UKGgGaAloD0MIm3PwTOhocUCUhpRSlGgVS/doFkdAoMrLFsHjZXV9lChoBmgJaA9DCLFOle9ZyHFAlIaUUpRoFU0GAWgWR0Cgyt1dxAB1dX2UKGgGaAloD0MIKJ1IMNU7cECUhpRSlGgVS95oFkdAoMsxs67ulXV9lChoBmgJaA9DCFMhHomXl3FAlIaUUpRoFU0aAWgWR0Cgy2v3SKFadX2UKGgGaAloD0MIsARSYtcscUCUhpRSlGgVTQYBaBZHQKDLzGhEjPh1fZQoaAZoCWgPQwj8OQX5GdJyQJSGlFKUaBVL9mgWR0Cgy/nNX5nEdX2UKGgGaAloD0MImIqNeR0kbkCUhpRSlGgVTTcBaBZHQKDMHFo+Ofd1fZQoaAZoCWgPQwjMCG8PwmxvQJSGlFKUaBVNDgFoFkdAoMxeCdz4lHV9lChoBmgJaA9DCJ7sZkY/em9AlIaUUpRoFUv+aBZHQKDMZbGm1pl1fZQoaAZoCWgPQwhKfVnaKUdwQJSGlFKUaBVNJAFoFkdAoMzNk+X7cnV9lChoBmgJaA9DCGfTEcCNznBAlIaUUpRoFU0NAWgWR0CgzNbQkX1rdX2UKGgGaAloD0MIEt4ehICSckCUhpRSlGgVTSYBaBZHQKDNSIO6NER1fZQoaAZoCWgPQwiLcJNR5S9zQJSGlFKUaBVNFgFoFkdAoM1TvPTodXV9lChoBmgJaA9DCGcqxCPxI3BAlIaUUpRoFU0GAWgWR0CgzaWx6fJ4dX2UKGgGaAloD0MIUmABTBluc0CUhpRSlGgVTQ0BaBZHQKDN0XKr7wd1fZQoaAZoCWgPQwieBgySfgpwQJSGlFKUaBVNAwFoFkdAoM412HLzPXV9lChoBmgJaA9DCLJnz2XqeXFAlIaUUpRoFU0GAWgWR0CgzvKQA+6idX2UKGgGaAloD0MIJ4V5j7MPc0CUhpRSlGgVTQABaBZHQKDPGnP3SKF1fZQoaAZoCWgPQwhYdVYL7EBuQJSGlFKUaBVNOQFoFkdAoM9o2hqTKXV9lChoBmgJaA9DCFw7URJSUnBAlIaUUpRoFUvoaBZHQKDPdsQd0aJ1fZQoaAZoCWgPQwhse7slefpwQJSGlFKUaBVL/WgWR0Cgz4CWNWELdX2UKGgGaAloD0MIIuLmVDKYcUCUhpRSlGgVTR0BaBZHQKDQOmYSg5B1fZQoaAZoCWgPQwjnbtdLk9xzQJSGlFKUaBVNHwFoFkdAoNCx4B3iaXV9lChoBmgJaA9DCIrKhjWVIXJAlIaUUpRoFU0pAWgWR0Cg0OYJE6T4dX2UKGgGaAloD0MITiUDQBX9b0CUhpRSlGgVTZABaBZHQKDQ9GFSKm91fZQoaAZoCWgPQwjcuTDSi1BvQJSGlFKUaBVNDQFoFkdAoND2HerMknV9lChoBmgJaA9DCL5LqUvGS29AlIaUUpRoFUv8aBZHQKDRQO4G2Th1fZQoaAZoCWgPQwii0oiZ/e1wQJSGlFKUaBVNMgFoFkdAoNFzGza9K3V9lChoBmgJaA9DCNKKbyi8pXNAlIaUUpRoFU0TAWgWR0Cg0YlO45LidX2UKGgGaAloD0MIUTBjClYdcECUhpRSlGgVS/hoFkdAoNGM2tMfzXV9lChoBmgJaA9DCJzexfuxynJAlIaUUpRoFUvxaBZHQKDRoCwr1/V1fZQoaAZoCWgPQwiy1eWUwD5yQJSGlFKUaBVNFgFoFkdAoNJxOBUaQ3V9lChoBmgJaA9DCNHno4x4zHJAlIaUUpRoFUv4aBZHQKDSrb3XZoR1fZQoaAZoCWgPQwjba0HvzQRzQJSGlFKUaBVNAAFoFkdAoNy6pWFN+XV9lChoBmgJaA9DCBiyutXzjXFAlIaUUpRoFUvyaBZHQKDcwzjWCmN1fZQoaAZoCWgPQwjzWDMyyN5wQJSGlFKUaBVNAAFoFkdAoN0CtxMnJHV9lChoBmgJaA9DCIHrihmh+nFAlIaUUpRoFU0XAWgWR0Cg3WG9YfW+dX2UKGgGaAloD0MIh4px/qbAckCUhpRSlGgVS+1oFkdAoN1mthd+onV9lChoBmgJaA9DCOTWpNuSDXBAlIaUUpRoFUvuaBZHQKDeBsolUqB1fZQoaAZoCWgPQwieKAmJtPhuQJSGlFKUaBVL/GgWR0Cg3hCvHLiddX2UKGgGaAloD0MI8DMuHIjTb0CUhpRSlGgVS/NoFkdAoN4q22G7BnV9lChoBmgJaA9DCFTE6SSbxXFAlIaUUpRoFUv1aBZHQKDeNh0hePd1fZQoaAZoCWgPQwjx8QnZeUhwQJSGlFKUaBVL82gWR0Cg3qmnfl6rdX2UKGgGaAloD0MIdSDrqVWnbUCUhpRSlGgVTQIBaBZHQKDerwLE1l51fZQoaAZoCWgPQwhHk4sxcBxxQJSGlFKUaBVL72gWR0Cg3rXMyJsPdX2UKGgGaAloD0MI9nr3xzvFckCUhpRSlGgVS/doFkdAoN7LJSzgM3V9lChoBmgJaA9DCKqCUUkdVm1AlIaUUpRoFU0WAWgWR0Cg3z+N1hb4dX2UKGgGaAloD0MIbagY528zbkCUhpRSlGgVS/xoFkdAoN/VCXyAhHV9lChoBmgJaA9DCMb9R6YDlXFAlIaUUpRoFUvwaBZHQKDgMbVjI7x1fZQoaAZoCWgPQwjNH9PatEJxQJSGlFKUaBVL72gWR0Cg4ILKvFFVdX2UKGgGaAloD0MI3uhjPqACb0CUhpRSlGgVTQQBaBZHQKDgke8PFvR1fZQoaAZoCWgPQwgG1QYnYvByQJSGlFKUaBVL+WgWR0Cg4ROiFj/ddX2UKGgGaAloD0MIDaX2Itrzb0CUhpRSlGgVS+poFkdAoOGB19v0iHV9lChoBmgJaA9DCH7+e/Dar21AlIaUUpRoFU0dAWgWR0Cg4a1Fx4pudX2UKGgGaAloD0MIluttM9XxcECUhpRSlGgVS/NoFkdAoOHLGvOhTXV9lChoBmgJaA9DCOVC5V8LV3JAlIaUUpRoFUv2aBZHQKDh4HkcS5B1fZQoaAZoCWgPQwihD5axIYpzQJSGlFKUaBVNDwFoFkdAoOIZB1LamHV9lChoBmgJaA9DCDaU2ouo/XJAlIaUUpRoFUvqaBZHQKDiLIikftB1fZQoaAZoCWgPQwjt72yPXgdwQJSGlFKUaBVNnQFoFkdAoOKdcv/R3XV9lChoBmgJaA9DCNE96xqt3XFAlIaUUpRoFU0QAWgWR0Cg4r0hmoR7dX2UKGgGaAloD0MIhgSMLu/ucECUhpRSlGgVS+VoFkdAoOLFTefqYHV9lChoBmgJaA9DCCcvMgG/NXJAlIaUUpRoFU0kAWgWR0Cg4vH8CPp7dX2UKGgGaAloD0MIGt6swfvicUCUhpRSlGgVTW0BaBZHQKDkNtx+8Xh1fZQoaAZoCWgPQwgkJxO3CulyQJSGlFKUaBVL/GgWR0Cg5FMOf/WEdX2UKGgGaAloD0MIGysxz8o3cECUhpRSlGgVTSEBaBZHQKDkrRNyo4x1fZQoaAZoCWgPQwgLem8MAYNxQJSGlFKUaBVNPAFoFkdAoOTDYChexHV9lChoBmgJaA9DCHC1TlwOQG9AlIaUUpRoFUvqaBZHQKDlHJ5E+gV1fZQoaAZoCWgPQwi3JXLBmTpxQJSGlFKUaBVNEQFoFkdAoOVddNWU8nV9lChoBmgJaA9DCMAhVKlZ1nNAlIaUUpRoFUvvaBZHQKDlYl41P311fZQoaAZoCWgPQwh3aFiMOkpvQJSGlFKUaBVL9GgWR0Cg5buJ+DvmdX2UKGgGaAloD0MIKbLWUGqbb0CUhpRSlGgVS+ZoFkdAoOXEyad+X3V9lChoBmgJaA9DCPiov16h8HFAlIaUUpRoFUv1aBZHQKDmHx6OYIB1fZQoaAZoCWgPQwjpDIy8bGhyQJSGlFKUaBVNEwFoFkdAoOYsbLlmvnV9lChoBmgJaA9DCOEkzR8Tt3FAlIaUUpRoFUvdaBZHQKDmaAOrhit1fZQoaAZoCWgPQwgrFr8pLPZwQJSGlFKUaBVNeQFoFkdAoOaPyAhB7nV9lChoBmgJaA9DCApNEkuKHHFAlIaUUpRoFU0ZAWgWR0Cg5zH3UQTVdX2UKGgGaAloD0MI4c/wZg2DbkCUhpRSlGgVTSgBaBZHQKDnR9m6Gxl1fZQoaAZoCWgPQwizCpsBbhRxQJSGlFKUaBVNKAFoFkdAoOembRWtEHV9lChoBmgJaA9DCOFh2jc3eHFAlIaUUpRoFUv0aBZHQKDoLYcNpdt1fZQoaAZoCWgPQwhzgctjzWdyQJSGlFKUaBVL4WgWR0Cg6DkhaC+UdX2UKGgGaAloD0MILNfbZmomc0CUhpRSlGgVS/loFkdAoOh+5QP7N3V9lChoBmgJaA9DCGPwMO2b5m1AlIaUUpRoFUvtaBZHQKDorvb48EF1fZQoaAZoCWgPQwiV8IRefzlxQJSGlFKUaBVNNwFoFkdAoOkJRoAXEnV9lChoBmgJaA9DCEhqoWSy3HBAlIaUUpRoFUvkaBZHQKDpB9itq591fZQoaAZoCWgPQwj8qfHSzVNxQJSGlFKUaBVL/mgWR0Cg6SRoysS1dX2UKGgGaAloD0MI6pJxjKSscECUhpRSlGgVTQkBaBZHQKDpSDkELYx1fZQoaAZoCWgPQwhuwr0yLxpzQJSGlFKUaBVL+WgWR0Cg6VedCmdidX2UKGgGaAloD0MIPsqICwDCcECUhpRSlGgVS/VoFkdAoOmNU+9rXXV9lChoBmgJaA9DCGLZzCEp2W9AlIaUUpRoFUvZaBZHQKDpkfbsWwh1fZQoaAZoCWgPQwj2YFJ8vIBxQJSGlFKUaBVL9WgWR0Cg6Zfoq0+ldX2UKGgGaAloD0MIfZbnwV1zcECUhpRSlGgVTScBaBZHQKDqe7QLNOd1fZQoaAZoCWgPQwikqgmi7l5xQJSGlFKUaBVL7GgWR0Cg6oytNi6QdX2UKGgGaAloD0MI6uv5miXwcUCUhpRSlGgVTQwBaBZHQKDq4llbu+h1fZQoaAZoCWgPQwhMF2L1hy5wQJSGlFKUaBVL42gWR0Cg60eQMhHLdX2UKGgGaAloD0MI+cCO/4JGbkCUhpRSlGgVTQ4BaBZHQKDrXZxJd0J1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 364,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37b0a93f0dc1275859dec0d398648fa97806d016c671811009a265158d92f671
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94f71b8c48a8a1163abc223026c4b42b7695c77f12aff711f17f05bfe13f9f12
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (245 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 270.619220599555, "std_reward": 25.665921785733513, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-09T22:37:21.348714"}