Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 270.62 +/- 25.67
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f50f3605040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f50f36050d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f50f3605160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f50f36051f0>", "_build": "<function ActorCriticPolicy._build at 0x7f50f3605280>", "forward": "<function ActorCriticPolicy.forward at 0x7f50f3605310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f50f36053a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f50f3605430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f50f36054c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f50f3605550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f50f36055e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f50f3601510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1114112, "_total_timesteps": 1100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673302455104959485, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1IPT4V/04/MsP4u3YP3L76D9o9WwjZvQAAAAAAAAAAGoaxPY/eOrrSja+15Ou3NTDrzbq0L7G2AACAPwAAgD/A1/M95jOVPjoCRr2wj6K+q3I7PSuASb0AAAAAAAAAAGaL47zXf2E6TZnePDShKb75cHE9ye6JvgAAAAAAAIA/jSsbPrDuWz9g6Uc8OmTwvmy6lz0FDpW9AAAAAAAAAAAAGuU8ri7UPfpge77zsjS+yuemvV5w/rwAAAAAAAAAAKbURz5NDbk/spwpPy96nb5HH5g+hMedPgAAAAAAAAAABmsCvkkiaj88qEa9FgP8vuZnQL5Na+M9AAAAAAAAAACz/Fy9YZjrPaZGAr0z3Tu+e1AwPBKkPzwAAAAAAAAAAE28Br6+z4w/Ug0Kv4SaE7+8cci9hiWEvgAAAAAAAAAAM9EdPEjZj7q7U2I1nCtRMKVrJzsa2pK0AACAPwAAgD9AL6w90sXdPLkYS776ElC+VyWSvGl6g70AAAAAAAAAAABNfj2h/Uc+WyAAvrnYaL5tM7+8UIHePAAAAAAAAAAAmpGRu46Mp7wmkzG8WcRuPJicE74qnzw9AACAPwAAgD/NsVm9gzgnPetOpj3UXE++1AdFPIWJV70AAAAAAAAAAJpZA7pIN4m6gluWMprh8i6tvrs6KrsSswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.012829090909090901, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGArYDkaccECUhpRSlIwBbJRL8YwBdJRHQKDJEHE/B311fZQoaAZoCWgPQwjbiv1l99xvQJSGlFKUaBVNCgFoFkdAoMlOHBUJfXV9lChoBmgJaA9DCKkyjLuBWHNAlIaUUpRoFUvgaBZHQKDJ2z6ab4J1fZQoaAZoCWgPQwgKhQg4xEBwQJSGlFKUaBVNEgFoFkdAoMnzVUdaMnV9lChoBmgJaA9DCCZzLO/qiXFAlIaUUpRoFU0YAWgWR0Cgyn+BxxT9dX2UKGgGaAloD0MIm3PwTOhocUCUhpRSlGgVS/doFkdAoMrLFsHjZXV9lChoBmgJaA9DCLFOle9ZyHFAlIaUUpRoFU0GAWgWR0Cgyt1dxAB1dX2UKGgGaAloD0MIKJ1IMNU7cECUhpRSlGgVS95oFkdAoMsxs67ulXV9lChoBmgJaA9DCFMhHomXl3FAlIaUUpRoFU0aAWgWR0Cgy2v3SKFadX2UKGgGaAloD0MIsARSYtcscUCUhpRSlGgVTQYBaBZHQKDLzGhEjPh1fZQoaAZoCWgPQwj8OQX5GdJyQJSGlFKUaBVL9mgWR0Cgy/nNX5nEdX2UKGgGaAloD0MImIqNeR0kbkCUhpRSlGgVTTcBaBZHQKDMHFo+Ofd1fZQoaAZoCWgPQwjMCG8PwmxvQJSGlFKUaBVNDgFoFkdAoMxeCdz4lHV9lChoBmgJaA9DCJ7sZkY/em9AlIaUUpRoFUv+aBZHQKDMZbGm1pl1fZQoaAZoCWgPQwhKfVnaKUdwQJSGlFKUaBVNJAFoFkdAoMzNk+X7cnV9lChoBmgJaA9DCGfTEcCNznBAlIaUUpRoFU0NAWgWR0CgzNbQkX1rdX2UKGgGaAloD0MIEt4ehICSckCUhpRSlGgVTSYBaBZHQKDNSIO6NER1fZQoaAZoCWgPQwiLcJNR5S9zQJSGlFKUaBVNFgFoFkdAoM1TvPTodXV9lChoBmgJaA9DCGcqxCPxI3BAlIaUUpRoFU0GAWgWR0CgzaWx6fJ4dX2UKGgGaAloD0MIUmABTBluc0CUhpRSlGgVTQ0BaBZHQKDN0XKr7wd1fZQoaAZoCWgPQwieBgySfgpwQJSGlFKUaBVNAwFoFkdAoM412HLzPXV9lChoBmgJaA9DCLJnz2XqeXFAlIaUUpRoFU0GAWgWR0CgzvKQA+6idX2UKGgGaAloD0MIJ4V5j7MPc0CUhpRSlGgVTQABaBZHQKDPGnP3SKF1fZQoaAZoCWgPQwhYdVYL7EBuQJSGlFKUaBVNOQFoFkdAoM9o2hqTKXV9lChoBmgJaA9DCFw7URJSUnBAlIaUUpRoFUvoaBZHQKDPdsQd0aJ1fZQoaAZoCWgPQwhse7slefpwQJSGlFKUaBVL/WgWR0Cgz4CWNWELdX2UKGgGaAloD0MIIuLmVDKYcUCUhpRSlGgVTR0BaBZHQKDQOmYSg5B1fZQoaAZoCWgPQwjnbtdLk9xzQJSGlFKUaBVNHwFoFkdAoNCx4B3iaXV9lChoBmgJaA9DCIrKhjWVIXJAlIaUUpRoFU0pAWgWR0Cg0OYJE6T4dX2UKGgGaAloD0MITiUDQBX9b0CUhpRSlGgVTZABaBZHQKDQ9GFSKm91fZQoaAZoCWgPQwjcuTDSi1BvQJSGlFKUaBVNDQFoFkdAoND2HerMknV9lChoBmgJaA9DCL5LqUvGS29AlIaUUpRoFUv8aBZHQKDRQO4G2Th1fZQoaAZoCWgPQwii0oiZ/e1wQJSGlFKUaBVNMgFoFkdAoNFzGza9K3V9lChoBmgJaA9DCNKKbyi8pXNAlIaUUpRoFU0TAWgWR0Cg0YlO45LidX2UKGgGaAloD0MIUTBjClYdcECUhpRSlGgVS/hoFkdAoNGM2tMfzXV9lChoBmgJaA9DCJzexfuxynJAlIaUUpRoFUvxaBZHQKDRoCwr1/V1fZQoaAZoCWgPQwiy1eWUwD5yQJSGlFKUaBVNFgFoFkdAoNJxOBUaQ3V9lChoBmgJaA9DCNHno4x4zHJAlIaUUpRoFUv4aBZHQKDSrb3XZoR1fZQoaAZoCWgPQwjba0HvzQRzQJSGlFKUaBVNAAFoFkdAoNy6pWFN+XV9lChoBmgJaA9DCBiyutXzjXFAlIaUUpRoFUvyaBZHQKDcwzjWCmN1fZQoaAZoCWgPQwjzWDMyyN5wQJSGlFKUaBVNAAFoFkdAoN0CtxMnJHV9lChoBmgJaA9DCIHrihmh+nFAlIaUUpRoFU0XAWgWR0Cg3WG9YfW+dX2UKGgGaAloD0MIh4px/qbAckCUhpRSlGgVS+1oFkdAoN1mthd+onV9lChoBmgJaA9DCOTWpNuSDXBAlIaUUpRoFUvuaBZHQKDeBsolUqB1fZQoaAZoCWgPQwieKAmJtPhuQJSGlFKUaBVL/GgWR0Cg3hCvHLiddX2UKGgGaAloD0MI8DMuHIjTb0CUhpRSlGgVS/NoFkdAoN4q22G7BnV9lChoBmgJaA9DCFTE6SSbxXFAlIaUUpRoFUv1aBZHQKDeNh0hePd1fZQoaAZoCWgPQwjx8QnZeUhwQJSGlFKUaBVL82gWR0Cg3qmnfl6rdX2UKGgGaAloD0MIdSDrqVWnbUCUhpRSlGgVTQIBaBZHQKDerwLE1l51fZQoaAZoCWgPQwhHk4sxcBxxQJSGlFKUaBVL72gWR0Cg3rXMyJsPdX2UKGgGaAloD0MI9nr3xzvFckCUhpRSlGgVS/doFkdAoN7LJSzgM3V9lChoBmgJaA9DCKqCUUkdVm1AlIaUUpRoFU0WAWgWR0Cg3z+N1hb4dX2UKGgGaAloD0MIbagY528zbkCUhpRSlGgVS/xoFkdAoN/VCXyAhHV9lChoBmgJaA9DCMb9R6YDlXFAlIaUUpRoFUvwaBZHQKDgMbVjI7x1fZQoaAZoCWgPQwjNH9PatEJxQJSGlFKUaBVL72gWR0Cg4ILKvFFVdX2UKGgGaAloD0MI3uhjPqACb0CUhpRSlGgVTQQBaBZHQKDgke8PFvR1fZQoaAZoCWgPQwgG1QYnYvByQJSGlFKUaBVL+WgWR0Cg4ROiFj/ddX2UKGgGaAloD0MIDaX2Itrzb0CUhpRSlGgVS+poFkdAoOGB19v0iHV9lChoBmgJaA9DCH7+e/Dar21AlIaUUpRoFU0dAWgWR0Cg4a1Fx4pudX2UKGgGaAloD0MIluttM9XxcECUhpRSlGgVS/NoFkdAoOHLGvOhTXV9lChoBmgJaA9DCOVC5V8LV3JAlIaUUpRoFUv2aBZHQKDh4HkcS5B1fZQoaAZoCWgPQwihD5axIYpzQJSGlFKUaBVNDwFoFkdAoOIZB1LamHV9lChoBmgJaA9DCDaU2ouo/XJAlIaUUpRoFUvqaBZHQKDiLIikftB1fZQoaAZoCWgPQwjt72yPXgdwQJSGlFKUaBVNnQFoFkdAoOKdcv/R3XV9lChoBmgJaA9DCNE96xqt3XFAlIaUUpRoFU0QAWgWR0Cg4r0hmoR7dX2UKGgGaAloD0MIhgSMLu/ucECUhpRSlGgVS+VoFkdAoOLFTefqYHV9lChoBmgJaA9DCCcvMgG/NXJAlIaUUpRoFU0kAWgWR0Cg4vH8CPp7dX2UKGgGaAloD0MIGt6swfvicUCUhpRSlGgVTW0BaBZHQKDkNtx+8Xh1fZQoaAZoCWgPQwgkJxO3CulyQJSGlFKUaBVL/GgWR0Cg5FMOf/WEdX2UKGgGaAloD0MIGysxz8o3cECUhpRSlGgVTSEBaBZHQKDkrRNyo4x1fZQoaAZoCWgPQwgLem8MAYNxQJSGlFKUaBVNPAFoFkdAoOTDYChexHV9lChoBmgJaA9DCHC1TlwOQG9AlIaUUpRoFUvqaBZHQKDlHJ5E+gV1fZQoaAZoCWgPQwi3JXLBmTpxQJSGlFKUaBVNEQFoFkdAoOVddNWU8nV9lChoBmgJaA9DCMAhVKlZ1nNAlIaUUpRoFUvvaBZHQKDlYl41P311fZQoaAZoCWgPQwh3aFiMOkpvQJSGlFKUaBVL9GgWR0Cg5buJ+DvmdX2UKGgGaAloD0MIKbLWUGqbb0CUhpRSlGgVS+ZoFkdAoOXEyad+X3V9lChoBmgJaA9DCPiov16h8HFAlIaUUpRoFUv1aBZHQKDmHx6OYIB1fZQoaAZoCWgPQwjpDIy8bGhyQJSGlFKUaBVNEwFoFkdAoOYsbLlmvnV9lChoBmgJaA9DCOEkzR8Tt3FAlIaUUpRoFUvdaBZHQKDmaAOrhit1fZQoaAZoCWgPQwgrFr8pLPZwQJSGlFKUaBVNeQFoFkdAoOaPyAhB7nV9lChoBmgJaA9DCApNEkuKHHFAlIaUUpRoFU0ZAWgWR0Cg5zH3UQTVdX2UKGgGaAloD0MI4c/wZg2DbkCUhpRSlGgVTSgBaBZHQKDnR9m6Gxl1fZQoaAZoCWgPQwizCpsBbhRxQJSGlFKUaBVNKAFoFkdAoOembRWtEHV9lChoBmgJaA9DCOFh2jc3eHFAlIaUUpRoFUv0aBZHQKDoLYcNpdt1fZQoaAZoCWgPQwhzgctjzWdyQJSGlFKUaBVL4WgWR0Cg6DkhaC+UdX2UKGgGaAloD0MILNfbZmomc0CUhpRSlGgVS/loFkdAoOh+5QP7N3V9lChoBmgJaA9DCGPwMO2b5m1AlIaUUpRoFUvtaBZHQKDorvb48EF1fZQoaAZoCWgPQwiV8IRefzlxQJSGlFKUaBVNNwFoFkdAoOkJRoAXEnV9lChoBmgJaA9DCEhqoWSy3HBAlIaUUpRoFUvkaBZHQKDpB9itq591fZQoaAZoCWgPQwj8qfHSzVNxQJSGlFKUaBVL/mgWR0Cg6SRoysS1dX2UKGgGaAloD0MI6pJxjKSscECUhpRSlGgVTQkBaBZHQKDpSDkELYx1fZQoaAZoCWgPQwhuwr0yLxpzQJSGlFKUaBVL+WgWR0Cg6VedCmdidX2UKGgGaAloD0MIPsqICwDCcECUhpRSlGgVS/VoFkdAoOmNU+9rXXV9lChoBmgJaA9DCGLZzCEp2W9AlIaUUpRoFUvZaBZHQKDpkfbsWwh1fZQoaAZoCWgPQwj2YFJ8vIBxQJSGlFKUaBVL9WgWR0Cg6Zfoq0+ldX2UKGgGaAloD0MIfZbnwV1zcECUhpRSlGgVTScBaBZHQKDqe7QLNOd1fZQoaAZoCWgPQwikqgmi7l5xQJSGlFKUaBVL7GgWR0Cg6oytNi6QdX2UKGgGaAloD0MI6uv5miXwcUCUhpRSlGgVTQwBaBZHQKDq4llbu+h1fZQoaAZoCWgPQwhMF2L1hy5wQJSGlFKUaBVL42gWR0Cg60eQMhHLdX2UKGgGaAloD0MI+cCO/4JGbkCUhpRSlGgVTQ4BaBZHQKDrXZxJd0J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 364, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac28761327d761a4df2b0ac3a5f406e15568f845723c5a0a80a6d600f0a82122
|
3 |
+
size 147154
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f50f3605040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f50f36050d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f50f3605160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f50f36051f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f50f3605280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f50f3605310>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f50f36053a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f50f3605430>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f50f36054c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f50f3605550>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f50f36055e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f50f3601510>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1114112,
|
46 |
+
"_total_timesteps": 1100000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673302455104959485,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1IPT4V/04/MsP4u3YP3L76D9o9WwjZvQAAAAAAAAAAGoaxPY/eOrrSja+15Ou3NTDrzbq0L7G2AACAPwAAgD/A1/M95jOVPjoCRr2wj6K+q3I7PSuASb0AAAAAAAAAAGaL47zXf2E6TZnePDShKb75cHE9ye6JvgAAAAAAAIA/jSsbPrDuWz9g6Uc8OmTwvmy6lz0FDpW9AAAAAAAAAAAAGuU8ri7UPfpge77zsjS+yuemvV5w/rwAAAAAAAAAAKbURz5NDbk/spwpPy96nb5HH5g+hMedPgAAAAAAAAAABmsCvkkiaj88qEa9FgP8vuZnQL5Na+M9AAAAAAAAAACz/Fy9YZjrPaZGAr0z3Tu+e1AwPBKkPzwAAAAAAAAAAE28Br6+z4w/Ug0Kv4SaE7+8cci9hiWEvgAAAAAAAAAAM9EdPEjZj7q7U2I1nCtRMKVrJzsa2pK0AACAPwAAgD9AL6w90sXdPLkYS776ElC+VyWSvGl6g70AAAAAAAAAAABNfj2h/Uc+WyAAvrnYaL5tM7+8UIHePAAAAAAAAAAAmpGRu46Mp7wmkzG8WcRuPJicE74qnzw9AACAPwAAgD/NsVm9gzgnPetOpj3UXE++1AdFPIWJV70AAAAAAAAAAJpZA7pIN4m6gluWMprh8i6tvrs6KrsSswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.012829090909090901,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVUBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGArYDkaccECUhpRSlIwBbJRL8YwBdJRHQKDJEHE/B311fZQoaAZoCWgPQwjbiv1l99xvQJSGlFKUaBVNCgFoFkdAoMlOHBUJfXV9lChoBmgJaA9DCKkyjLuBWHNAlIaUUpRoFUvgaBZHQKDJ2z6ab4J1fZQoaAZoCWgPQwgKhQg4xEBwQJSGlFKUaBVNEgFoFkdAoMnzVUdaMnV9lChoBmgJaA9DCCZzLO/qiXFAlIaUUpRoFU0YAWgWR0Cgyn+BxxT9dX2UKGgGaAloD0MIm3PwTOhocUCUhpRSlGgVS/doFkdAoMrLFsHjZXV9lChoBmgJaA9DCLFOle9ZyHFAlIaUUpRoFU0GAWgWR0Cgyt1dxAB1dX2UKGgGaAloD0MIKJ1IMNU7cECUhpRSlGgVS95oFkdAoMsxs67ulXV9lChoBmgJaA9DCFMhHomXl3FAlIaUUpRoFU0aAWgWR0Cgy2v3SKFadX2UKGgGaAloD0MIsARSYtcscUCUhpRSlGgVTQYBaBZHQKDLzGhEjPh1fZQoaAZoCWgPQwj8OQX5GdJyQJSGlFKUaBVL9mgWR0Cgy/nNX5nEdX2UKGgGaAloD0MImIqNeR0kbkCUhpRSlGgVTTcBaBZHQKDMHFo+Ofd1fZQoaAZoCWgPQwjMCG8PwmxvQJSGlFKUaBVNDgFoFkdAoMxeCdz4lHV9lChoBmgJaA9DCJ7sZkY/em9AlIaUUpRoFUv+aBZHQKDMZbGm1pl1fZQoaAZoCWgPQwhKfVnaKUdwQJSGlFKUaBVNJAFoFkdAoMzNk+X7cnV9lChoBmgJaA9DCGfTEcCNznBAlIaUUpRoFU0NAWgWR0CgzNbQkX1rdX2UKGgGaAloD0MIEt4ehICSckCUhpRSlGgVTSYBaBZHQKDNSIO6NER1fZQoaAZoCWgPQwiLcJNR5S9zQJSGlFKUaBVNFgFoFkdAoM1TvPTodXV9lChoBmgJaA9DCGcqxCPxI3BAlIaUUpRoFU0GAWgWR0CgzaWx6fJ4dX2UKGgGaAloD0MIUmABTBluc0CUhpRSlGgVTQ0BaBZHQKDN0XKr7wd1fZQoaAZoCWgPQwieBgySfgpwQJSGlFKUaBVNAwFoFkdAoM412HLzPXV9lChoBmgJaA9DCLJnz2XqeXFAlIaUUpRoFU0GAWgWR0CgzvKQA+6idX2UKGgGaAloD0MIJ4V5j7MPc0CUhpRSlGgVTQABaBZHQKDPGnP3SKF1fZQoaAZoCWgPQwhYdVYL7EBuQJSGlFKUaBVNOQFoFkdAoM9o2hqTKXV9lChoBmgJaA9DCFw7URJSUnBAlIaUUpRoFUvoaBZHQKDPdsQd0aJ1fZQoaAZoCWgPQwhse7slefpwQJSGlFKUaBVL/WgWR0Cgz4CWNWELdX2UKGgGaAloD0MIIuLmVDKYcUCUhpRSlGgVTR0BaBZHQKDQOmYSg5B1fZQoaAZoCWgPQwjnbtdLk9xzQJSGlFKUaBVNHwFoFkdAoNCx4B3iaXV9lChoBmgJaA9DCIrKhjWVIXJAlIaUUpRoFU0pAWgWR0Cg0OYJE6T4dX2UKGgGaAloD0MITiUDQBX9b0CUhpRSlGgVTZABaBZHQKDQ9GFSKm91fZQoaAZoCWgPQwjcuTDSi1BvQJSGlFKUaBVNDQFoFkdAoND2HerMknV9lChoBmgJaA9DCL5LqUvGS29AlIaUUpRoFUv8aBZHQKDRQO4G2Th1fZQoaAZoCWgPQwii0oiZ/e1wQJSGlFKUaBVNMgFoFkdAoNFzGza9K3V9lChoBmgJaA9DCNKKbyi8pXNAlIaUUpRoFU0TAWgWR0Cg0YlO45LidX2UKGgGaAloD0MIUTBjClYdcECUhpRSlGgVS/hoFkdAoNGM2tMfzXV9lChoBmgJaA9DCJzexfuxynJAlIaUUpRoFUvxaBZHQKDRoCwr1/V1fZQoaAZoCWgPQwiy1eWUwD5yQJSGlFKUaBVNFgFoFkdAoNJxOBUaQ3V9lChoBmgJaA9DCNHno4x4zHJAlIaUUpRoFUv4aBZHQKDSrb3XZoR1fZQoaAZoCWgPQwjba0HvzQRzQJSGlFKUaBVNAAFoFkdAoNy6pWFN+XV9lChoBmgJaA9DCBiyutXzjXFAlIaUUpRoFUvyaBZHQKDcwzjWCmN1fZQoaAZoCWgPQwjzWDMyyN5wQJSGlFKUaBVNAAFoFkdAoN0CtxMnJHV9lChoBmgJaA9DCIHrihmh+nFAlIaUUpRoFU0XAWgWR0Cg3WG9YfW+dX2UKGgGaAloD0MIh4px/qbAckCUhpRSlGgVS+1oFkdAoN1mthd+onV9lChoBmgJaA9DCOTWpNuSDXBAlIaUUpRoFUvuaBZHQKDeBsolUqB1fZQoaAZoCWgPQwieKAmJtPhuQJSGlFKUaBVL/GgWR0Cg3hCvHLiddX2UKGgGaAloD0MI8DMuHIjTb0CUhpRSlGgVS/NoFkdAoN4q22G7BnV9lChoBmgJaA9DCFTE6SSbxXFAlIaUUpRoFUv1aBZHQKDeNh0hePd1fZQoaAZoCWgPQwjx8QnZeUhwQJSGlFKUaBVL82gWR0Cg3qmnfl6rdX2UKGgGaAloD0MIdSDrqVWnbUCUhpRSlGgVTQIBaBZHQKDerwLE1l51fZQoaAZoCWgPQwhHk4sxcBxxQJSGlFKUaBVL72gWR0Cg3rXMyJsPdX2UKGgGaAloD0MI9nr3xzvFckCUhpRSlGgVS/doFkdAoN7LJSzgM3V9lChoBmgJaA9DCKqCUUkdVm1AlIaUUpRoFU0WAWgWR0Cg3z+N1hb4dX2UKGgGaAloD0MIbagY528zbkCUhpRSlGgVS/xoFkdAoN/VCXyAhHV9lChoBmgJaA9DCMb9R6YDlXFAlIaUUpRoFUvwaBZHQKDgMbVjI7x1fZQoaAZoCWgPQwjNH9PatEJxQJSGlFKUaBVL72gWR0Cg4ILKvFFVdX2UKGgGaAloD0MI3uhjPqACb0CUhpRSlGgVTQQBaBZHQKDgke8PFvR1fZQoaAZoCWgPQwgG1QYnYvByQJSGlFKUaBVL+WgWR0Cg4ROiFj/ddX2UKGgGaAloD0MIDaX2Itrzb0CUhpRSlGgVS+poFkdAoOGB19v0iHV9lChoBmgJaA9DCH7+e/Dar21AlIaUUpRoFU0dAWgWR0Cg4a1Fx4pudX2UKGgGaAloD0MIluttM9XxcECUhpRSlGgVS/NoFkdAoOHLGvOhTXV9lChoBmgJaA9DCOVC5V8LV3JAlIaUUpRoFUv2aBZHQKDh4HkcS5B1fZQoaAZoCWgPQwihD5axIYpzQJSGlFKUaBVNDwFoFkdAoOIZB1LamHV9lChoBmgJaA9DCDaU2ouo/XJAlIaUUpRoFUvqaBZHQKDiLIikftB1fZQoaAZoCWgPQwjt72yPXgdwQJSGlFKUaBVNnQFoFkdAoOKdcv/R3XV9lChoBmgJaA9DCNE96xqt3XFAlIaUUpRoFU0QAWgWR0Cg4r0hmoR7dX2UKGgGaAloD0MIhgSMLu/ucECUhpRSlGgVS+VoFkdAoOLFTefqYHV9lChoBmgJaA9DCCcvMgG/NXJAlIaUUpRoFU0kAWgWR0Cg4vH8CPp7dX2UKGgGaAloD0MIGt6swfvicUCUhpRSlGgVTW0BaBZHQKDkNtx+8Xh1fZQoaAZoCWgPQwgkJxO3CulyQJSGlFKUaBVL/GgWR0Cg5FMOf/WEdX2UKGgGaAloD0MIGysxz8o3cECUhpRSlGgVTSEBaBZHQKDkrRNyo4x1fZQoaAZoCWgPQwgLem8MAYNxQJSGlFKUaBVNPAFoFkdAoOTDYChexHV9lChoBmgJaA9DCHC1TlwOQG9AlIaUUpRoFUvqaBZHQKDlHJ5E+gV1fZQoaAZoCWgPQwi3JXLBmTpxQJSGlFKUaBVNEQFoFkdAoOVddNWU8nV9lChoBmgJaA9DCMAhVKlZ1nNAlIaUUpRoFUvvaBZHQKDlYl41P311fZQoaAZoCWgPQwh3aFiMOkpvQJSGlFKUaBVL9GgWR0Cg5buJ+DvmdX2UKGgGaAloD0MIKbLWUGqbb0CUhpRSlGgVS+ZoFkdAoOXEyad+X3V9lChoBmgJaA9DCPiov16h8HFAlIaUUpRoFUv1aBZHQKDmHx6OYIB1fZQoaAZoCWgPQwjpDIy8bGhyQJSGlFKUaBVNEwFoFkdAoOYsbLlmvnV9lChoBmgJaA9DCOEkzR8Tt3FAlIaUUpRoFUvdaBZHQKDmaAOrhit1fZQoaAZoCWgPQwgrFr8pLPZwQJSGlFKUaBVNeQFoFkdAoOaPyAhB7nV9lChoBmgJaA9DCApNEkuKHHFAlIaUUpRoFU0ZAWgWR0Cg5zH3UQTVdX2UKGgGaAloD0MI4c/wZg2DbkCUhpRSlGgVTSgBaBZHQKDnR9m6Gxl1fZQoaAZoCWgPQwizCpsBbhRxQJSGlFKUaBVNKAFoFkdAoOembRWtEHV9lChoBmgJaA9DCOFh2jc3eHFAlIaUUpRoFUv0aBZHQKDoLYcNpdt1fZQoaAZoCWgPQwhzgctjzWdyQJSGlFKUaBVL4WgWR0Cg6DkhaC+UdX2UKGgGaAloD0MILNfbZmomc0CUhpRSlGgVS/loFkdAoOh+5QP7N3V9lChoBmgJaA9DCGPwMO2b5m1AlIaUUpRoFUvtaBZHQKDorvb48EF1fZQoaAZoCWgPQwiV8IRefzlxQJSGlFKUaBVNNwFoFkdAoOkJRoAXEnV9lChoBmgJaA9DCEhqoWSy3HBAlIaUUpRoFUvkaBZHQKDpB9itq591fZQoaAZoCWgPQwj8qfHSzVNxQJSGlFKUaBVL/mgWR0Cg6SRoysS1dX2UKGgGaAloD0MI6pJxjKSscECUhpRSlGgVTQkBaBZHQKDpSDkELYx1fZQoaAZoCWgPQwhuwr0yLxpzQJSGlFKUaBVL+WgWR0Cg6VedCmdidX2UKGgGaAloD0MIPsqICwDCcECUhpRSlGgVS/VoFkdAoOmNU+9rXXV9lChoBmgJaA9DCGLZzCEp2W9AlIaUUpRoFUvZaBZHQKDpkfbsWwh1fZQoaAZoCWgPQwj2YFJ8vIBxQJSGlFKUaBVL9WgWR0Cg6Zfoq0+ldX2UKGgGaAloD0MIfZbnwV1zcECUhpRSlGgVTScBaBZHQKDqe7QLNOd1fZQoaAZoCWgPQwikqgmi7l5xQJSGlFKUaBVL7GgWR0Cg6oytNi6QdX2UKGgGaAloD0MI6uv5miXwcUCUhpRSlGgVTQwBaBZHQKDq4llbu+h1fZQoaAZoCWgPQwhMF2L1hy5wQJSGlFKUaBVL42gWR0Cg60eQMhHLdX2UKGgGaAloD0MI+cCO/4JGbkCUhpRSlGgVTQ4BaBZHQKDrXZxJd0J1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 364,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37b0a93f0dc1275859dec0d398648fa97806d016c671811009a265158d92f671
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94f71b8c48a8a1163abc223026c4b42b7695c77f12aff711f17f05bfe13f9f12
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (245 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 270.619220599555, "std_reward": 25.665921785733513, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-09T22:37:21.348714"}
|