pjh6818 commited on
Commit
7abce0d
·
verified ·
1 Parent(s): 1ed0083

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:10501
8
+ - loss:CosineSimilarityLoss
9
+ base_model: klue/roberta-base
10
+ widget:
11
+ - source_sentence: 아침마다 제가 원하는 시간에 맛있는 조식도 먹을 수 있었어요.
12
+ sentences:
13
+ - 매일 아침 내가 원하는 시간에 맛있는 아침식사를 먹을 수 있었습니다.
14
+ - 태풍과 폭염 중 어떤 것이 올까요?
15
+ - 떼르미니 역에서 5분 이내고 주변에 마트 식당 빵집 등등 편의시설도 가득합니다.
16
+ - source_sentence: 아무리 우수한 방역체계도 신뢰 없이는 작동하기 어렵습니다.
17
+ sentences:
18
+ - 좋은 위치와 좋은 숙소와 좋은 호스트가 있습니다.
19
+ - 위치도 룸도 모든 기 완벽한 곳이었다!
20
+ - 콜센터 시설 내외부 방역도 철저히 실시하기로 했다.
21
+ - source_sentence: 굳이 모든 메일을 다 가지고 있을 필요는 없어. 중요하지 않은 학회 홍보 메일은 지워도 돼.
22
+ sentences:
23
+ - 바르셀로나에 가실 거면 시내에 안 계셔도 된다면 이 숙소를 추천해 드릴게요!
24
+ - 학교에서 온 메일 말고 학회 홍보메일만 삭제해줘
25
+ - 사그라다 파밀리아까지는 걸어서 10분거리구요.
26
+ - source_sentence: 더운물로 세탁하자.
27
+ sentences:
28
+ - 네가 시간 떼울 때 보고싶은 오락 프로그램 이름 알려주면 찾아볼께
29
+ - 장인어른과의 약속에 정시에 가지 말고 일찍 나오세요.
30
+ - 안방 취침등 또는 형광등은 어떻게 켜?
31
+ - source_sentence: 또한 숙소는 청결하고 아늑한 장소입니다.
32
+ sentences:
33
+ - 또한, 숙소는 깨끗하고 아늑한 곳입니다.
34
+ - 깜빡하고 백화점 세일 일정 잊어버리면 안된다.
35
+ - 전체적으로 집 내부가 너무 예뻤어요.
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - pearson_cosine
40
+ - spearman_cosine
41
+ co2_eq_emissions:
42
+ emissions: 6.29574616666927
43
+ energy_consumed: 0.014386922744112848
44
+ source: codecarbon
45
+ training_type: fine-tuning
46
+ on_cloud: false
47
+ cpu_model: Intel(R) Core(TM) i7-14700KF
48
+ ram_total_size: 63.83439254760742
49
+ hours_used: 0.044
50
+ hardware_used: 1 x NVIDIA GeForce RTX 4090
51
+ model-index:
52
+ - name: SentenceTransformer based on klue/roberta-base
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: Unknown
59
+ type: unknown
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.3477070403258199
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.35560473197486514
66
+ name: Spearman Cosine
67
+ - type: pearson_cosine
68
+ value: 0.9624051736790307
69
+ name: Pearson Cosine
70
+ - type: spearman_cosine
71
+ value: 0.922152297127282
72
+ name: Spearman Cosine
73
+ ---
74
+
75
+ # SentenceTransformer based on klue/roberta-base
76
+
77
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
78
+
79
+ ## Model Details
80
+
81
+ ### Model Description
82
+ - **Model Type:** Sentence Transformer
83
+ - **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
84
+ - **Maximum Sequence Length:** 512 tokens
85
+ - **Output Dimensionality:** 768 dimensions
86
+ - **Similarity Function:** Cosine Similarity
87
+ <!-- - **Training Dataset:** Unknown -->
88
+ <!-- - **Language:** Unknown -->
89
+ <!-- - **License:** Unknown -->
90
+
91
+ ### Model Sources
92
+
93
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
94
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
95
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
96
+
97
+ ### Full Model Architecture
98
+
99
+ ```
100
+ SentenceTransformer(
101
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
102
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
103
+ )
104
+ ```
105
+
106
+ ## Usage
107
+
108
+ ### Direct Usage (Sentence Transformers)
109
+
110
+ First install the Sentence Transformers library:
111
+
112
+ ```bash
113
+ pip install -U sentence-transformers
114
+ ```
115
+
116
+ Then you can load this model and run inference.
117
+ ```python
118
+ from sentence_transformers import SentenceTransformer
119
+
120
+ # Download from the 🤗 Hub
121
+ model = SentenceTransformer("sentence_transformers_model_id")
122
+ # Run inference
123
+ sentences = [
124
+ '또한 숙소는 청결하고 아늑한 장소입니다.',
125
+ '또한, 숙소는 깨끗하고 아늑한 곳입니다.',
126
+ '깜빡하고 백화점 세일 일정 잊어버리면 안된다.',
127
+ ]
128
+ embeddings = model.encode(sentences)
129
+ print(embeddings.shape)
130
+ # [3, 768]
131
+
132
+ # Get the similarity scores for the embeddings
133
+ similarities = model.similarity(embeddings, embeddings)
134
+ print(similarities.shape)
135
+ # [3, 3]
136
+ ```
137
+
138
+ <!--
139
+ ### Direct Usage (Transformers)
140
+
141
+ <details><summary>Click to see the direct usage in Transformers</summary>
142
+
143
+ </details>
144
+ -->
145
+
146
+ <!--
147
+ ### Downstream Usage (Sentence Transformers)
148
+
149
+ You can finetune this model on your own dataset.
150
+
151
+ <details><summary>Click to expand</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Out-of-Scope Use
158
+
159
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
160
+ -->
161
+
162
+ ## Evaluation
163
+
164
+ ### Metrics
165
+
166
+ #### Semantic Similarity
167
+
168
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
169
+
170
+ | Metric | Value |
171
+ |:--------------------|:-----------|
172
+ | pearson_cosine | 0.3477 |
173
+ | **spearman_cosine** | **0.3556** |
174
+
175
+ #### Semantic Similarity
176
+
177
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
178
+
179
+ | Metric | Value |
180
+ |:--------------------|:-----------|
181
+ | pearson_cosine | 0.9624 |
182
+ | **spearman_cosine** | **0.9222** |
183
+
184
+ <!--
185
+ ## Bias, Risks and Limitations
186
+
187
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
188
+ -->
189
+
190
+ <!--
191
+ ### Recommendations
192
+
193
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
194
+ -->
195
+
196
+ ## Training Details
197
+
198
+ ### Training Dataset
199
+
200
+ #### Unnamed Dataset
201
+
202
+
203
+ * Size: 10,501 training samples
204
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
205
+ * Approximate statistics based on the first 1000 samples:
206
+ | | sentence_0 | sentence_1 | label |
207
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
208
+ | type | string | string | float |
209
+ | details | <ul><li>min: 6 tokens</li><li>mean: 19.8 tokens</li><li>max: 81 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.36 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.46</li><li>max: 1.0</li></ul> |
210
+ * Samples:
211
+ | sentence_0 | sentence_1 | label |
212
+ |:----------------------------------------------------------------|:-------------------------------------------------------------|:------------------|
213
+ | <code>아울러, 4월 9일부터 5월말까지 EBS 교육사이트를 데이터 걱정 없이 이용할 수 있습니다</code> | <code>현장방문 신청 둘째 주인 11월 2일부터 11월 6일까지는 구분없이 신청할 수 있다.</code> | <code>0.08</code> |
214
+ | <code>내일 오전에 있는 수업 몇 시에 시작하더라?</code> | <code>남자친구 생일이 언제야?</code> | <code>0.0</code> |
215
+ | <code>아무리 우수한 방역체계도 신뢰 없이는 작동하기 어렵습니다.</code> | <code>콜센터 시설 내외부 방역도 철저히 실시하기로 했다.</code> | <code>0.12</code> |
216
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
217
+ ```json
218
+ {
219
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
220
+ }
221
+ ```
222
+
223
+ ### Training Hyperparameters
224
+ #### Non-Default Hyperparameters
225
+
226
+ - `per_device_train_batch_size`: 16
227
+ - `per_device_eval_batch_size`: 16
228
+ - `num_train_epochs`: 4
229
+ - `multi_dataset_batch_sampler`: round_robin
230
+
231
+ #### All Hyperparameters
232
+ <details><summary>Click to expand</summary>
233
+
234
+ - `overwrite_output_dir`: False
235
+ - `do_predict`: False
236
+ - `prediction_loss_only`: True
237
+ - `per_device_train_batch_size`: 16
238
+ - `per_device_eval_batch_size`: 16
239
+ - `per_gpu_train_batch_size`: None
240
+ - `per_gpu_eval_batch_size`: None
241
+ - `gradient_accumulation_steps`: 1
242
+ - `eval_accumulation_steps`: None
243
+ - `learning_rate`: 5e-05
244
+ - `weight_decay`: 0.0
245
+ - `adam_beta1`: 0.9
246
+ - `adam_beta2`: 0.999
247
+ - `adam_epsilon`: 1e-08
248
+ - `max_grad_norm`: 1
249
+ - `num_train_epochs`: 4
250
+ - `max_steps`: -1
251
+ - `lr_scheduler_type`: linear
252
+ - `lr_scheduler_kwargs`: {}
253
+ - `warmup_ratio`: 0.0
254
+ - `warmup_steps`: 0
255
+ - `log_level`: passive
256
+ - `log_level_replica`: warning
257
+ - `log_on_each_node`: True
258
+ - `logging_nan_inf_filter`: True
259
+ - `save_safetensors`: True
260
+ - `save_on_each_node`: False
261
+ - `save_only_model`: False
262
+ - `no_cuda`: False
263
+ - `use_cpu`: False
264
+ - `use_mps_device`: False
265
+ - `seed`: 42
266
+ - `data_seed`: None
267
+ - `jit_mode_eval`: False
268
+ - `use_ipex`: False
269
+ - `bf16`: False
270
+ - `fp16`: False
271
+ - `fp16_opt_level`: O1
272
+ - `half_precision_backend`: auto
273
+ - `bf16_full_eval`: False
274
+ - `fp16_full_eval`: False
275
+ - `tf32`: None
276
+ - `local_rank`: 0
277
+ - `ddp_backend`: None
278
+ - `tpu_num_cores`: None
279
+ - `tpu_metrics_debug`: False
280
+ - `debug`: []
281
+ - `dataloader_drop_last`: False
282
+ - `dataloader_num_workers`: 0
283
+ - `dataloader_prefetch_factor`: None
284
+ - `past_index`: -1
285
+ - `disable_tqdm`: False
286
+ - `remove_unused_columns`: True
287
+ - `label_names`: None
288
+ - `load_best_model_at_end`: False
289
+ - `ignore_data_skip`: False
290
+ - `fsdp`: []
291
+ - `fsdp_min_num_params`: 0
292
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
293
+ - `fsdp_transformer_layer_cls_to_wrap`: None
294
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
295
+ - `deepspeed`: None
296
+ - `label_smoothing_factor`: 0.0
297
+ - `optim`: adamw_torch
298
+ - `optim_args`: None
299
+ - `adafactor`: False
300
+ - `group_by_length`: False
301
+ - `length_column_name`: length
302
+ - `ddp_find_unused_parameters`: None
303
+ - `ddp_bucket_cap_mb`: None
304
+ - `ddp_broadcast_buffers`: False
305
+ - `dataloader_pin_memory`: True
306
+ - `dataloader_persistent_workers`: False
307
+ - `skip_memory_metrics`: True
308
+ - `use_legacy_prediction_loop`: False
309
+ - `push_to_hub`: False
310
+ - `resume_from_checkpoint`: None
311
+ - `hub_model_id`: None
312
+ - `hub_strategy`: every_save
313
+ - `hub_private_repo`: False
314
+ - `hub_always_push`: False
315
+ - `gradient_checkpointing`: False
316
+ - `gradient_checkpointing_kwargs`: None
317
+ - `include_inputs_for_metrics`: False
318
+ - `eval_do_concat_batches`: True
319
+ - `fp16_backend`: auto
320
+ - `push_to_hub_model_id`: None
321
+ - `push_to_hub_organization`: None
322
+ - `mp_parameters`:
323
+ - `auto_find_batch_size`: False
324
+ - `full_determinism`: False
325
+ - `torchdynamo`: None
326
+ - `ray_scope`: last
327
+ - `ddp_timeout`: 1800
328
+ - `torch_compile`: False
329
+ - `torch_compile_backend`: None
330
+ - `torch_compile_mode`: None
331
+ - `dispatch_batches`: None
332
+ - `split_batches`: None
333
+ - `include_tokens_per_second`: False
334
+ - `include_num_input_tokens_seen`: False
335
+ - `neftune_noise_alpha`: None
336
+ - `optim_target_modules`: None
337
+ - `prompts`: None
338
+ - `batch_sampler`: batch_sampler
339
+ - `multi_dataset_batch_sampler`: round_robin
340
+
341
+ </details>
342
+
343
+ ### Training Logs
344
+ | Epoch | Step | Training Loss | spearman_cosine |
345
+ |:------:|:----:|:-------------:|:---------------:|
346
+ | 0 | 0 | - | 0.3556 |
347
+ | 0.7610 | 500 | 0.0279 | - |
348
+ | 1.0 | 657 | - | 0.9086 |
349
+ | 1.5221 | 1000 | 0.0087 | 0.9158 |
350
+ | 2.0 | 1314 | - | 0.9177 |
351
+ | 2.2831 | 1500 | 0.0046 | - |
352
+ | 3.0 | 1971 | - | 0.9191 |
353
+ | 3.0441 | 2000 | 0.0034 | 0.9199 |
354
+ | 3.8052 | 2500 | 0.0027 | - |
355
+ | 4.0 | 2628 | - | 0.9222 |
356
+
357
+
358
+ ### Environmental Impact
359
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
360
+ - **Energy Consumed**: 0.014 kWh
361
+ - **Carbon Emitted**: 0.006 kg of CO2
362
+ - **Hours Used**: 0.044 hours
363
+
364
+ ### Training Hardware
365
+ - **On Cloud**: No
366
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 4090
367
+ - **CPU Model**: Intel(R) Core(TM) i7-14700KF
368
+ - **RAM Size**: 63.83 GB
369
+
370
+ ### Framework Versions
371
+ - Python: 3.12.8
372
+ - Sentence Transformers: 3.3.1
373
+ - Transformers: 4.40.1
374
+ - PyTorch: 2.5.1+cu118
375
+ - Accelerate: 0.29.3
376
+ - Datasets: 2.19.1
377
+ - Tokenizers: 0.19.1
378
+
379
+ ## Citation
380
+
381
+ ### BibTeX
382
+
383
+ #### Sentence Transformers
384
+ ```bibtex
385
+ @inproceedings{reimers-2019-sentence-bert,
386
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
387
+ author = "Reimers, Nils and Gurevych, Iryna",
388
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
389
+ month = "11",
390
+ year = "2019",
391
+ publisher = "Association for Computational Linguistics",
392
+ url = "https://arxiv.org/abs/1908.10084",
393
+ }
394
+ ```
395
+
396
+ <!--
397
+ ## Glossary
398
+
399
+ *Clearly define terms in order to be accessible across audiences.*
400
+ -->
401
+
402
+ <!--
403
+ ## Model Card Authors
404
+
405
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
406
+ -->
407
+
408
+ <!--
409
+ ## Model Card Contact
410
+
411
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
412
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "klue/roberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.40.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.40.1",
5
+ "pytorch": "2.5.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65c00ffcc8535576aa2d77964ff728f6b02ce036fcb71722735b3c2275bebcad
3
+ size 442494816
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "[PAD]",
54
+ "sep_token": "[SEP]",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "BertTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff