File size: 2,399 Bytes
669c5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-ethosrealdata
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.934010152284264
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-ethosrealdata
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2117
- Accuracy: 0.9340
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.9707 | 0.9913 | 57 | 0.6825 | 0.8160 |
| 0.3507 | 2.0 | 115 | 0.3680 | 0.8909 |
| 0.2002 | 2.9913 | 172 | 0.3121 | 0.9023 |
| 0.1249 | 4.0 | 230 | 0.2951 | 0.9150 |
| 0.1002 | 4.9913 | 287 | 0.2596 | 0.9251 |
| 0.1014 | 6.0 | 345 | 0.2615 | 0.9251 |
| 0.1261 | 6.9913 | 402 | 0.2437 | 0.9365 |
| 0.0556 | 8.0 | 460 | 0.2198 | 0.9416 |
| 0.0415 | 8.9913 | 517 | 0.2119 | 0.9416 |
| 0.0294 | 9.9130 | 570 | 0.2117 | 0.9340 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|