pki commited on
Commit
0d63360
1 Parent(s): 2794cba

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -0
README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - xsum
6
+ metrics:
7
+ - rouge
8
+ model-index:
9
+ - name: t5-small-finetuned_xsum
10
+ results:
11
+ - task:
12
+ name: Sequence-to-sequence Language Modeling
13
+ type: text2text-generation
14
+ dataset:
15
+ name: xsum
16
+ type: xsum
17
+ args: default
18
+ metrics:
19
+ - name: Rouge1
20
+ type: rouge
21
+ value: 33.1688
22
+ ---
23
+
24
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
25
+ should probably proofread and complete it, then remove this comment. -->
26
+
27
+ # t5-small-finetuned_xsum
28
+
29
+ This model is a fine-tuned version of [pki/t5-small-finetuned-xsum-finetuned-xsum](https://huggingface.co/pki/t5-small-finetuned-xsum-finetuned-xsum) on the xsum dataset.
30
+ It achieves the following results on the evaluation set:
31
+ - Loss: 2.0881
32
+ - Rouge1: 33.1688
33
+ - Rouge2: 11.831
34
+ - Rougel: 26.796
35
+ - Rougelsum: 26.7931
36
+ - Gen Len: 18.7957
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 2e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 50
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
66
+ |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
67
+ | 2.3789 | 1.0 | 12753 | 2.2274 | 31.3107 | 10.1407 | 25.0522 | 25.0423 | 18.8193 |
68
+ | 2.3565 | 2.0 | 25506 | 2.2159 | 31.5958 | 10.4022 | 25.3267 | 25.3228 | 18.7992 |
69
+ | 2.3504 | 3.0 | 38259 | 2.2037 | 31.8838 | 10.5974 | 25.5777 | 25.5786 | 18.7928 |
70
+ | 2.3345 | 4.0 | 51012 | 2.1956 | 31.8402 | 10.5656 | 25.5027 | 25.4994 | 18.8163 |
71
+ | 2.3175 | 5.0 | 63765 | 2.1868 | 31.9412 | 10.7187 | 25.6688 | 25.6719 | 18.7902 |
72
+ | 2.3177 | 6.0 | 76518 | 2.1805 | 31.9831 | 10.7074 | 25.6869 | 25.6863 | 18.8099 |
73
+ | 2.3027 | 7.0 | 89271 | 2.1734 | 32.0714 | 10.7714 | 25.7193 | 25.7141 | 18.7961 |
74
+ | 2.289 | 8.0 | 102024 | 2.1667 | 32.1598 | 10.883 | 25.8608 | 25.8605 | 18.8144 |
75
+ | 2.2875 | 9.0 | 114777 | 2.1622 | 32.0933 | 10.9046 | 25.8399 | 25.8329 | 18.8009 |
76
+ | 2.2796 | 10.0 | 127530 | 2.1547 | 32.391 | 11.112 | 26.0903 | 26.0931 | 18.7992 |
77
+ | 2.286 | 11.0 | 140283 | 2.1504 | 32.4479 | 11.1077 | 26.1274 | 26.1267 | 18.7975 |
78
+ | 2.2542 | 12.0 | 153036 | 2.1464 | 32.4059 | 11.1583 | 26.1111 | 26.1047 | 18.8042 |
79
+ | 2.2526 | 13.0 | 165789 | 2.1416 | 32.425 | 11.2178 | 26.1854 | 26.1795 | 18.7865 |
80
+ | 2.2374 | 14.0 | 178542 | 2.1372 | 32.299 | 11.1047 | 26.0495 | 26.0434 | 18.8016 |
81
+ | 2.2295 | 15.0 | 191295 | 2.1331 | 32.4283 | 11.2233 | 26.135 | 26.128 | 18.8004 |
82
+ | 2.2213 | 16.0 | 204048 | 2.1306 | 32.4948 | 11.2885 | 26.2607 | 26.2551 | 18.7854 |
83
+ | 2.1985 | 17.0 | 216801 | 2.1282 | 32.5872 | 11.3243 | 26.31 | 26.3062 | 18.7986 |
84
+ | 2.1993 | 18.0 | 229554 | 2.1245 | 32.6278 | 11.3196 | 26.3142 | 26.315 | 18.7809 |
85
+ | 2.2044 | 19.0 | 242307 | 2.1223 | 32.676 | 11.3871 | 26.356 | 26.3426 | 18.8007 |
86
+ | 2.2035 | 20.0 | 255060 | 2.1188 | 32.8736 | 11.4703 | 26.4901 | 26.4899 | 18.7863 |
87
+ | 2.1909 | 21.0 | 267813 | 2.1167 | 32.8288 | 11.4666 | 26.4992 | 26.4877 | 18.796 |
88
+ | 2.1835 | 22.0 | 280566 | 2.1141 | 32.9183 | 11.5267 | 26.5302 | 26.5338 | 18.8034 |
89
+ | 2.1845 | 23.0 | 293319 | 2.1127 | 32.7907 | 11.444 | 26.4614 | 26.459 | 18.8054 |
90
+ | 2.1725 | 24.0 | 306072 | 2.1109 | 32.8191 | 11.4973 | 26.5109 | 26.5012 | 18.7818 |
91
+ | 2.1805 | 25.0 | 318825 | 2.1082 | 32.7333 | 11.4325 | 26.4093 | 26.4028 | 18.7986 |
92
+ | 2.1661 | 26.0 | 331578 | 2.1063 | 32.8703 | 11.5443 | 26.5105 | 26.5101 | 18.7962 |
93
+ | 2.1606 | 27.0 | 344331 | 2.1048 | 32.884 | 11.558 | 26.5504 | 26.5465 | 18.7939 |
94
+ | 2.1508 | 28.0 | 357084 | 2.1032 | 32.9699 | 11.6036 | 26.6348 | 26.6266 | 18.7983 |
95
+ | 2.1479 | 29.0 | 369837 | 2.1019 | 32.8247 | 11.5812 | 26.5659 | 26.5595 | 18.7992 |
96
+ | 2.1363 | 30.0 | 382590 | 2.1019 | 32.9982 | 11.6801 | 26.6552 | 26.6497 | 18.797 |
97
+ | 2.1513 | 31.0 | 395343 | 2.0996 | 32.9903 | 11.6632 | 26.6579 | 26.6521 | 18.7911 |
98
+ | 2.1389 | 32.0 | 408096 | 2.0981 | 33.0195 | 11.7282 | 26.683 | 26.6757 | 18.7824 |
99
+ | 2.1421 | 33.0 | 420849 | 2.0968 | 32.9967 | 11.6949 | 26.6734 | 26.662 | 18.796 |
100
+ | 2.1545 | 34.0 | 433602 | 2.0954 | 33.0943 | 11.7329 | 26.7367 | 26.7295 | 18.7871 |
101
+ | 2.1459 | 35.0 | 446355 | 2.0949 | 33.1534 | 11.816 | 26.775 | 26.7716 | 18.7914 |
102
+ | 2.1364 | 36.0 | 459108 | 2.0933 | 33.0686 | 11.7418 | 26.7147 | 26.7066 | 18.7901 |
103
+ | 2.1194 | 37.0 | 471861 | 2.0928 | 33.1276 | 11.8268 | 26.7684 | 26.7626 | 18.802 |
104
+ | 2.1292 | 38.0 | 484614 | 2.0925 | 33.0462 | 11.7669 | 26.6798 | 26.6783 | 18.802 |
105
+ | 2.1317 | 39.0 | 497367 | 2.0913 | 33.1402 | 11.7889 | 26.7822 | 26.7824 | 18.7962 |
106
+ | 2.1176 | 40.0 | 510120 | 2.0907 | 33.1488 | 11.8001 | 26.7749 | 26.7615 | 18.7992 |
107
+ | 2.1318 | 41.0 | 522873 | 2.0899 | 33.0963 | 11.8162 | 26.7433 | 26.7325 | 18.7924 |
108
+ | 2.1052 | 42.0 | 535626 | 2.0899 | 33.0764 | 11.7624 | 26.7294 | 26.7238 | 18.7911 |
109
+ | 2.1267 | 43.0 | 548379 | 2.0891 | 33.1292 | 11.8029 | 26.7684 | 26.7693 | 18.7885 |
110
+ | 2.1211 | 44.0 | 561132 | 2.0894 | 33.09 | 11.7676 | 26.7418 | 26.7394 | 18.7853 |
111
+ | 2.1243 | 45.0 | 573885 | 2.0880 | 33.1449 | 11.7899 | 26.7725 | 26.7634 | 18.7946 |
112
+ | 2.0947 | 46.0 | 586638 | 2.0885 | 33.1548 | 11.8108 | 26.808 | 26.8003 | 18.7917 |
113
+ | 2.1246 | 47.0 | 599391 | 2.0881 | 33.148 | 11.8208 | 26.803 | 26.7961 | 18.7913 |
114
+ | 2.127 | 48.0 | 612144 | 2.0877 | 33.1935 | 11.8399 | 26.8209 | 26.8142 | 18.7925 |
115
+ | 2.1231 | 49.0 | 624897 | 2.0878 | 33.158 | 11.8159 | 26.7898 | 26.785 | 18.794 |
116
+ | 2.1296 | 50.0 | 637650 | 2.0881 | 33.1688 | 11.831 | 26.796 | 26.7931 | 18.7957 |
117
+
118
+
119
+ ### Framework versions
120
+
121
+ - Transformers 4.12.0.dev0
122
+ - Pytorch 1.10.0+cu113
123
+ - Datasets 1.14.0
124
+ - Tokenizers 0.10.3