pki commited on
Commit
145cc7a
·
1 Parent(s): ee11acb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -66
README.md CHANGED
@@ -18,7 +18,7 @@ model-index:
18
  metrics:
19
  - name: Rouge1
20
  type: rouge
21
- value: 33.1688
22
  ---
23
 
24
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -26,14 +26,14 @@ should probably proofread and complete it, then remove this comment. -->
26
 
27
  # t5-small-finetuned_xsum
28
 
29
- This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
30
  It achieves the following results on the evaluation set:
31
- - Loss: 2.0881
32
- - Rouge1: 33.1688
33
- - Rouge2: 11.831
34
- - Rougel: 26.796
35
- - Rougelsum: 26.7931
36
- - Gen Len: 18.7957
37
 
38
  ## Model description
39
 
@@ -41,13 +41,7 @@ More information needed
41
 
42
  ## Intended uses & limitations
43
 
44
- The Extreme Summarization (XSum) dataset is a dataset for evaluation of abstractive single-document summarization systems. The goal is to create a short, one-sentence new summary answering the question “What is the article about?”. The dataset consists of 226,711 news articles accompanied with a one-sentence summary. The articles are collected from BBC articles (2010 to 2017) and cover a wide variety of domains (e.g., News, Politics, Sports, Weather, Business, Technology, Science, Health, Family, Education, Entertainment and Arts). The official random split contains 204,045 (90%), 11,332 (5%) and 11,334 (5) documents in training, validation and test sets, respectively.
45
-
46
- T5, or Text-to-Text Transfer Transformer, is a Transformer based architecture that uses a text-to-text approach. Every task – including translation, question answering, and classification – is cast as feeding the model text as input and training it to generate some target text. This allows for the use of the same model, loss function, hyperparameters, etc. across our diverse set of tasks. The changes compared to BERT include:
47
-
48
- - adding a causal decoder to the bidirectional architecture.
49
- - replacing the fill-in-the-blank cloze task with a mix of alternative pre-training tasks.
50
-
51
 
52
  ## Training and evaluation data
53
 
@@ -70,61 +64,61 @@ The following hyperparameters were used during training:
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
72
  |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
73
- | 2.3789 | 1.0 | 12753 | 2.2274 | 31.3107 | 10.1407 | 25.0522 | 25.0423 | 18.8193 |
74
- | 2.3565 | 2.0 | 25506 | 2.2159 | 31.5958 | 10.4022 | 25.3267 | 25.3228 | 18.7992 |
75
- | 2.3504 | 3.0 | 38259 | 2.2037 | 31.8838 | 10.5974 | 25.5777 | 25.5786 | 18.7928 |
76
- | 2.3345 | 4.0 | 51012 | 2.1956 | 31.8402 | 10.5656 | 25.5027 | 25.4994 | 18.8163 |
77
- | 2.3175 | 5.0 | 63765 | 2.1868 | 31.9412 | 10.7187 | 25.6688 | 25.6719 | 18.7902 |
78
- | 2.3177 | 6.0 | 76518 | 2.1805 | 31.9831 | 10.7074 | 25.6869 | 25.6863 | 18.8099 |
79
- | 2.3027 | 7.0 | 89271 | 2.1734 | 32.0714 | 10.7714 | 25.7193 | 25.7141 | 18.7961 |
80
- | 2.289 | 8.0 | 102024 | 2.1667 | 32.1598 | 10.883 | 25.8608 | 25.8605 | 18.8144 |
81
- | 2.2875 | 9.0 | 114777 | 2.1622 | 32.0933 | 10.9046 | 25.8399 | 25.8329 | 18.8009 |
82
- | 2.2796 | 10.0 | 127530 | 2.1547 | 32.391 | 11.112 | 26.0903 | 26.0931 | 18.7992 |
83
- | 2.286 | 11.0 | 140283 | 2.1504 | 32.4479 | 11.1077 | 26.1274 | 26.1267 | 18.7975 |
84
- | 2.2542 | 12.0 | 153036 | 2.1464 | 32.4059 | 11.1583 | 26.1111 | 26.1047 | 18.8042 |
85
- | 2.2526 | 13.0 | 165789 | 2.1416 | 32.425 | 11.2178 | 26.1854 | 26.1795 | 18.7865 |
86
- | 2.2374 | 14.0 | 178542 | 2.1372 | 32.299 | 11.1047 | 26.0495 | 26.0434 | 18.8016 |
87
- | 2.2295 | 15.0 | 191295 | 2.1331 | 32.4283 | 11.2233 | 26.135 | 26.128 | 18.8004 |
88
- | 2.2213 | 16.0 | 204048 | 2.1306 | 32.4948 | 11.2885 | 26.2607 | 26.2551 | 18.7854 |
89
- | 2.1985 | 17.0 | 216801 | 2.1282 | 32.5872 | 11.3243 | 26.31 | 26.3062 | 18.7986 |
90
- | 2.1993 | 18.0 | 229554 | 2.1245 | 32.6278 | 11.3196 | 26.3142 | 26.315 | 18.7809 |
91
- | 2.2044 | 19.0 | 242307 | 2.1223 | 32.676 | 11.3871 | 26.356 | 26.3426 | 18.8007 |
92
- | 2.2035 | 20.0 | 255060 | 2.1188 | 32.8736 | 11.4703 | 26.4901 | 26.4899 | 18.7863 |
93
- | 2.1909 | 21.0 | 267813 | 2.1167 | 32.8288 | 11.4666 | 26.4992 | 26.4877 | 18.796 |
94
- | 2.1835 | 22.0 | 280566 | 2.1141 | 32.9183 | 11.5267 | 26.5302 | 26.5338 | 18.8034 |
95
- | 2.1845 | 23.0 | 293319 | 2.1127 | 32.7907 | 11.444 | 26.4614 | 26.459 | 18.8054 |
96
- | 2.1725 | 24.0 | 306072 | 2.1109 | 32.8191 | 11.4973 | 26.5109 | 26.5012 | 18.7818 |
97
- | 2.1805 | 25.0 | 318825 | 2.1082 | 32.7333 | 11.4325 | 26.4093 | 26.4028 | 18.7986 |
98
- | 2.1661 | 26.0 | 331578 | 2.1063 | 32.8703 | 11.5443 | 26.5105 | 26.5101 | 18.7962 |
99
- | 2.1606 | 27.0 | 344331 | 2.1048 | 32.884 | 11.558 | 26.5504 | 26.5465 | 18.7939 |
100
- | 2.1508 | 28.0 | 357084 | 2.1032 | 32.9699 | 11.6036 | 26.6348 | 26.6266 | 18.7983 |
101
- | 2.1479 | 29.0 | 369837 | 2.1019 | 32.8247 | 11.5812 | 26.5659 | 26.5595 | 18.7992 |
102
- | 2.1363 | 30.0 | 382590 | 2.1019 | 32.9982 | 11.6801 | 26.6552 | 26.6497 | 18.797 |
103
- | 2.1513 | 31.0 | 395343 | 2.0996 | 32.9903 | 11.6632 | 26.6579 | 26.6521 | 18.7911 |
104
- | 2.1389 | 32.0 | 408096 | 2.0981 | 33.0195 | 11.7282 | 26.683 | 26.6757 | 18.7824 |
105
- | 2.1421 | 33.0 | 420849 | 2.0968 | 32.9967 | 11.6949 | 26.6734 | 26.662 | 18.796 |
106
- | 2.1545 | 34.0 | 433602 | 2.0954 | 33.0943 | 11.7329 | 26.7367 | 26.7295 | 18.7871 |
107
- | 2.1459 | 35.0 | 446355 | 2.0949 | 33.1534 | 11.816 | 26.775 | 26.7716 | 18.7914 |
108
- | 2.1364 | 36.0 | 459108 | 2.0933 | 33.0686 | 11.7418 | 26.7147 | 26.7066 | 18.7901 |
109
- | 2.1194 | 37.0 | 471861 | 2.0928 | 33.1276 | 11.8268 | 26.7684 | 26.7626 | 18.802 |
110
- | 2.1292 | 38.0 | 484614 | 2.0925 | 33.0462 | 11.7669 | 26.6798 | 26.6783 | 18.802 |
111
- | 2.1317 | 39.0 | 497367 | 2.0913 | 33.1402 | 11.7889 | 26.7822 | 26.7824 | 18.7962 |
112
- | 2.1176 | 40.0 | 510120 | 2.0907 | 33.1488 | 11.8001 | 26.7749 | 26.7615 | 18.7992 |
113
- | 2.1318 | 41.0 | 522873 | 2.0899 | 33.0963 | 11.8162 | 26.7433 | 26.7325 | 18.7924 |
114
- | 2.1052 | 42.0 | 535626 | 2.0899 | 33.0764 | 11.7624 | 26.7294 | 26.7238 | 18.7911 |
115
- | 2.1267 | 43.0 | 548379 | 2.0891 | 33.1292 | 11.8029 | 26.7684 | 26.7693 | 18.7885 |
116
- | 2.1211 | 44.0 | 561132 | 2.0894 | 33.09 | 11.7676 | 26.7418 | 26.7394 | 18.7853 |
117
- | 2.1243 | 45.0 | 573885 | 2.0880 | 33.1449 | 11.7899 | 26.7725 | 26.7634 | 18.7946 |
118
- | 2.0947 | 46.0 | 586638 | 2.0885 | 33.1548 | 11.8108 | 26.808 | 26.8003 | 18.7917 |
119
- | 2.1246 | 47.0 | 599391 | 2.0881 | 33.148 | 11.8208 | 26.803 | 26.7961 | 18.7913 |
120
- | 2.127 | 48.0 | 612144 | 2.0877 | 33.1935 | 11.8399 | 26.8209 | 26.8142 | 18.7925 |
121
- | 2.1231 | 49.0 | 624897 | 2.0878 | 33.158 | 11.8159 | 26.7898 | 26.785 | 18.794 |
122
- | 2.1296 | 50.0 | 637650 | 2.0881 | 33.1688 | 11.831 | 26.796 | 26.7931 | 18.7957 |
123
 
124
 
125
  ### Framework versions
126
 
127
  - Transformers 4.12.0.dev0
128
- - Pytorch 1.10.0+cu113
129
  - Datasets 1.14.0
130
  - Tokenizers 0.10.3
 
18
  metrics:
19
  - name: Rouge1
20
  type: rouge
21
+ value: 34.0559
22
  ---
23
 
24
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
26
 
27
  # t5-small-finetuned_xsum
28
 
29
+ This model is a fine-tuned version of [pki/t5-small-finetuned_xsum](https://huggingface.co/pki/t5-small-finetuned_xsum) on the xsum dataset.
30
  It achieves the following results on the evaluation set:
31
+ - Loss: 2.0479
32
+ - Rouge1: 34.0559
33
+ - Rouge2: 12.7506
34
+ - Rougel: 27.6762
35
+ - Rougelsum: 27.68
36
+ - Gen Len: 18.7924
37
 
38
  ## Model description
39
 
 
41
 
42
  ## Intended uses & limitations
43
 
44
+ More information needed
 
 
 
 
 
 
45
 
46
  ## Training and evaluation data
47
 
 
64
 
65
  | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
66
  |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
67
+ | 2.1176 | 1.0 | 12753 | 2.0913 | 33.1548 | 11.8434 | 26.7805 | 26.7751 | 18.7805 |
68
+ | 2.1019 | 2.0 | 25506 | 2.0875 | 33.231 | 11.9329 | 26.8674 | 26.861 | 18.7992 |
69
+ | 2.1044 | 3.0 | 38259 | 2.0846 | 33.3643 | 11.9807 | 26.9817 | 26.9764 | 18.773 |
70
+ | 2.0874 | 4.0 | 51012 | 2.0832 | 33.3562 | 12.0681 | 27.0178 | 27.0189 | 18.7988 |
71
+ | 2.0791 | 5.0 | 63765 | 2.0803 | 33.38 | 12.081 | 27.0368 | 27.0344 | 18.7844 |
72
+ | 2.0894 | 6.0 | 76518 | 2.0787 | 33.2549 | 11.9662 | 26.8674 | 26.8669 | 18.7975 |
73
+ | 2.0802 | 7.0 | 89271 | 2.0777 | 33.3978 | 12.0828 | 27.0461 | 27.0443 | 18.7757 |
74
+ | 2.0719 | 8.0 | 102024 | 2.0743 | 33.4083 | 12.1141 | 27.0523 | 27.0457 | 18.7928 |
75
+ | 2.0782 | 9.0 | 114777 | 2.0748 | 33.3673 | 12.1637 | 27.0696 | 27.0663 | 18.7902 |
76
+ | 2.0736 | 10.0 | 127530 | 2.0713 | 33.5771 | 12.2219 | 27.1707 | 27.1706 | 18.7945 |
77
+ | 2.0816 | 11.0 | 140283 | 2.0703 | 33.5099 | 12.2069 | 27.1822 | 27.1835 | 18.8002 |
78
+ | 2.057 | 12.0 | 153036 | 2.0693 | 33.5853 | 12.2427 | 27.2096 | 27.2109 | 18.806 |
79
+ | 2.0584 | 13.0 | 165789 | 2.0676 | 33.4883 | 12.2674 | 27.1582 | 27.154 | 18.7857 |
80
+ | 2.0475 | 14.0 | 178542 | 2.0662 | 33.5529 | 12.2765 | 27.1897 | 27.1901 | 18.79 |
81
+ | 2.0426 | 15.0 | 191295 | 2.0643 | 33.6543 | 12.3545 | 27.2946 | 27.2928 | 18.8036 |
82
+ | 2.0373 | 16.0 | 204048 | 2.0648 | 33.6671 | 12.349 | 27.2649 | 27.2707 | 18.7905 |
83
+ | 2.0178 | 17.0 | 216801 | 2.0637 | 33.6794 | 12.4545 | 27.3015 | 27.3079 | 18.7948 |
84
+ | 2.0235 | 18.0 | 229554 | 2.0626 | 33.7635 | 12.423 | 27.3475 | 27.3446 | 18.7892 |
85
+ | 2.0296 | 19.0 | 242307 | 2.0622 | 33.7574 | 12.4651 | 27.3879 | 27.3882 | 18.8134 |
86
+ | 2.0319 | 20.0 | 255060 | 2.0595 | 33.9093 | 12.5389 | 27.5003 | 27.5001 | 18.7915 |
87
+ | 2.0208 | 21.0 | 267813 | 2.0583 | 33.7875 | 12.4912 | 27.4243 | 27.4332 | 18.7982 |
88
+ | 2.0151 | 22.0 | 280566 | 2.0581 | 33.8516 | 12.4805 | 27.46 | 27.4647 | 18.816 |
89
+ | 2.0188 | 23.0 | 293319 | 2.0575 | 33.7744 | 12.4548 | 27.381 | 27.382 | 18.802 |
90
+ | 2.0087 | 24.0 | 306072 | 2.0579 | 33.8953 | 12.4984 | 27.4675 | 27.4727 | 18.7819 |
91
+ | 2.0186 | 25.0 | 318825 | 2.0557 | 33.7766 | 12.4414 | 27.4025 | 27.4024 | 18.8005 |
92
+ | 2.0051 | 26.0 | 331578 | 2.0555 | 33.8973 | 12.5796 | 27.5338 | 27.5339 | 18.8153 |
93
+ | 2.0024 | 27.0 | 344331 | 2.0557 | 33.8709 | 12.5116 | 27.4684 | 27.4664 | 18.7911 |
94
+ | 1.9947 | 28.0 | 357084 | 2.0545 | 33.8499 | 12.5242 | 27.4677 | 27.4716 | 18.8025 |
95
+ | 1.9931 | 29.0 | 369837 | 2.0545 | 33.7957 | 12.5272 | 27.4129 | 27.4174 | 18.8 |
96
+ | 1.9826 | 30.0 | 382590 | 2.0548 | 33.9723 | 12.6665 | 27.5598 | 27.5662 | 18.7958 |
97
+ | 1.999 | 31.0 | 395343 | 2.0522 | 33.9702 | 12.6435 | 27.5788 | 27.579 | 18.795 |
98
+ | 1.9872 | 32.0 | 408096 | 2.0525 | 33.9546 | 12.638 | 27.5985 | 27.5949 | 18.7976 |
99
+ | 1.991 | 33.0 | 420849 | 2.0520 | 33.9792 | 12.6073 | 27.5686 | 27.5707 | 18.8056 |
100
+ | 2.0044 | 34.0 | 433602 | 2.0504 | 34.0736 | 12.6511 | 27.647 | 27.6472 | 18.8093 |
101
+ | 1.9972 | 35.0 | 446355 | 2.0513 | 34.0506 | 12.711 | 27.6533 | 27.6537 | 18.7984 |
102
+ | 1.9901 | 36.0 | 459108 | 2.0504 | 33.9991 | 12.638 | 27.626 | 27.6272 | 18.7996 |
103
+ | 1.9742 | 37.0 | 471861 | 2.0507 | 33.9357 | 12.6636 | 27.5673 | 27.5716 | 18.8064 |
104
+ | 1.984 | 38.0 | 484614 | 2.0502 | 33.9476 | 12.6589 | 27.58 | 27.5813 | 18.8037 |
105
+ | 1.9864 | 39.0 | 497367 | 2.0499 | 34.0733 | 12.7198 | 27.6926 | 27.6992 | 18.8061 |
106
+ | 1.9734 | 40.0 | 510120 | 2.0492 | 33.9483 | 12.6486 | 27.5571 | 27.5598 | 18.8033 |
107
+ | 1.9895 | 41.0 | 522873 | 2.0490 | 33.9753 | 12.684 | 27.6058 | 27.6086 | 18.8011 |
108
+ | 1.964 | 42.0 | 535626 | 2.0487 | 33.9528 | 12.6376 | 27.576 | 27.5824 | 18.7919 |
109
+ | 1.9849 | 43.0 | 548379 | 2.0487 | 33.9868 | 12.6936 | 27.6116 | 27.6158 | 18.7966 |
110
+ | 1.9798 | 44.0 | 561132 | 2.0491 | 34.0379 | 12.7161 | 27.6227 | 27.6315 | 18.7889 |
111
+ | 1.9837 | 45.0 | 573885 | 2.0473 | 34.0046 | 12.6559 | 27.5931 | 27.5988 | 18.7996 |
112
+ | 1.9556 | 46.0 | 586638 | 2.0483 | 34.0378 | 12.712 | 27.6346 | 27.6446 | 18.7942 |
113
+ | 1.9844 | 47.0 | 599391 | 2.0479 | 34.0301 | 12.7121 | 27.6492 | 27.6554 | 18.7999 |
114
+ | 1.9869 | 48.0 | 612144 | 2.0474 | 34.0463 | 12.7151 | 27.6542 | 27.6604 | 18.7919 |
115
+ | 1.9851 | 49.0 | 624897 | 2.0476 | 34.0549 | 12.7384 | 27.6542 | 27.6555 | 18.7924 |
116
+ | 1.9912 | 50.0 | 637650 | 2.0479 | 34.0559 | 12.7506 | 27.6762 | 27.68 | 18.7924 |
117
 
118
 
119
  ### Framework versions
120
 
121
  - Transformers 4.12.0.dev0
122
+ - Pytorch 1.10.1
123
  - Datasets 1.14.0
124
  - Tokenizers 0.10.3