File size: 3,561 Bytes
ec0b089 18b35f1 ec0b089 18b35f1 3038a8e 18b35f1 ec0b089 18b35f1 a6dc7c2 18b35f1 a6dc7c2 18b35f1 5a62a9a 18b35f1 a6dc7c2 18b35f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
pipeline_tag: sentence-similarity
language: ja
license: cc-by-sa-4.0
tags:
- transformers
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# Japanese SimCSE (BERT-base)
[日本語のREADME/Japanese README](https://huggingface.co/pkshatech/simcse-ja-bert-base-clcmlp/blob/main/README_JA.md)
## summary
model name: `pkshatech/simcse-ja-bert-base-clcmlp`
This is a Japanese [SimCSE](https://arxiv.org/abs/2104.08821) model. You can easily extract sentence embedding representations from Japanese sentences. This model is based on [`cl-tohoku/bert-base-japanese-v2`](https://huggingface.co/cl-tohoku/bert-base-japanese-v2) and trained on [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88) dataset, which is a Japanese natural language inference dataset.
## Usage (Sentence-Transformers)
You can use this model easily with [sentence-transformers](https://www.SBERT.net).
You need [fugashi](https://github.com/polm/fugashi) and [unidic-lite](https://pypi.org/project/unidic-lite/) for tokenization.
Please install sentence-transformers, fugashi, and unidic-lite with pip as follows:
```
pip install -U fugashi[unidic-lite] sentence-transformers
```
You can load the model and convert sentences to dense vectors as follows:
```python
from sentence_transformers import SentenceTransformer
sentences = [
"PKSHA Technologyは機械学習/深層学習技術に関わるアルゴリズムソリューションを展開している。",
"この深層学習モデルはPKSHA Technologyによって学習され、公開された。",
"広目天は、仏教における四天王の一尊であり、サンスクリット語の「種々の眼をした者」を名前の由来とする。",
]
model = SentenceTransformer('pkshatech/simcse-ja-bert-base-clcmlp')
embeddings = model.encode(sentences)
print(embeddings)
```
Since the loss function used during training is cosine similarity, we recommend using cosine similarity for downstream tasks.
## Model Detail
### Tokenization
We use the same tokenizer as `tohoku/bert-base-japanese-v2`. Please see the [README of `tohoku/bert-base-japanese-v2`](https://huggingface.co/cl-tohoku/bert-base-japanese-v2) for details.
### Training
We set `tohoku/bert-base-japanese-v2` as the initial value and trained it on the train set of [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88). We trained 20 epochs and published the checkpoint of the model with the highest Spearman's correlation coefficient on the validation set [^1] of the train set of [JSTS](https://github.com/yahoojapan/JGLUE)
### Training Parameters
| Parameter | Value |
| --- | --- |
|pooling_strategy | [CLS] -> single fully-connected layer |
| max_seq_length | 128 |
| with hard negative | true |
| temperature of contrastive loss | 0.05 |
| Batch size | 200 |
| Learning rate | 1e-5 |
| Weight decay | 0.01 |
| Max gradient norm | 1.0 |
| Warmup steps | 2012 |
| Scheduler | WarmupLinear |
| Epochs | 20 |
| Evaluation steps | 250 |
# Licenses
This models are distributed under the terms of the Creative [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/).
[^1]: When we trained this model, the test data of JGLUE was not released, so we used the dev set of JGLUE as a private evaluation data. Therefore, we selected the checkpoint on the train set of JGLUE insted of its dev set.
|