from diffusers import ( StableDiffusionPipeline, PNDMScheduler, ) from diffusers.models import AutoencoderKL import os import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") vae = AutoencoderKL.from_pretrained( "stabilityai/sd-vae-ft-ema", torch_dtype=torch.float32 ) common_config = {"beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} SCHEDULER = PNDMScheduler(**common_config, skip_prk_steps=True, steps_offset=1,) HF_API_TOKEN = os.getenv("HF_API_TOKEN") shared_pipe_kwargs = dict( vae=vae, torch_dtype=torch.float32, revision="fp16", use_auth_token=HF_API_TOKEN, scheduler=SCHEDULER, ) base_sd_pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", **shared_pipe_kwargs ).to(device) pai_model_dir = '.' playground_v1_model_dir = os.path.join( pai_model_dir, "snapshots/36c9e19103f6b897886fb019ebc4d8e86b566032" ) pgv1_shared_pipe_kwargs = dict( vae=vae, torch_dtype=torch.float32, tokenizer=base_sd_pipe.tokenizer, feature_extractor=base_sd_pipe.feature_extractor, text_encoder=base_sd_pipe.text_encoder, scheduler=SCHEDULER, local_files_only=True, ) pgv1_pipe = StableDiffusionPipeline.from_pretrained( playground_v1_model_dir, **pgv1_shared_pipe_kwargs, ).to(device) img = pgv1_pipe("Frog", num_inference_steps=30) img[0][0].save('frog.png')