pogtador commited on
Commit
64a66d4
·
verified ·
1 Parent(s): 778ffcf

Domain-specific continued pretraining of RoBERTa

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: roberta-base
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: roberta-continued-pretraining
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # roberta-continued-pretraining
16
+
17
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.2371
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
43
+ - lr_scheduler_type: linear
44
+ - lr_scheduler_warmup_steps: 500
45
+ - num_epochs: 3
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:------:|:----:|:---------------:|
51
+ | 1.6688 | 0.3337 | 1000 | 1.4834 |
52
+ | 1.5534 | 0.6673 | 2000 | 1.4207 |
53
+ | 1.5071 | 1.0010 | 3000 | 1.3937 |
54
+ | 1.4337 | 1.3347 | 4000 | 1.3301 |
55
+ | 1.4162 | 1.6683 | 5000 | 1.3126 |
56
+ | 1.372 | 2.0020 | 6000 | 1.2803 |
57
+ | 1.3325 | 2.3357 | 7000 | 1.2564 |
58
+ | 1.307 | 2.6693 | 8000 | 1.2371 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.48.1
64
+ - Pytorch 2.5.1+cu121
65
+ - Datasets 3.2.0
66
+ - Tokenizers 0.21.0