polejowska commited on
Commit
7ede69c
1 Parent(s): e35e165

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -6
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.9497354497354498
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.9702
35
- - Accuracy: 0.9497
36
 
37
  ## Model description
38
 
@@ -60,14 +60,17 @@ The following hyperparameters were used during training:
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 2
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | 1.5256 | 0.98 | 33 | 1.3147 | 0.9180 |
70
- | 0.9811 | 1.98 | 66 | 0.9702 | 0.9497 |
 
 
 
71
 
72
 
73
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.9801587301587301
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.3394
35
+ - Accuracy: 0.9802
36
 
37
  ## Model description
38
 
 
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 5
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.7076 | 0.98 | 33 | 0.6119 | 0.9696 |
70
+ | 0.4469 | 1.98 | 66 | 0.4190 | 0.9788 |
71
+ | 0.3497 | 2.98 | 99 | 0.3555 | 0.9788 |
72
+ | 0.3048 | 3.98 | 132 | 0.3394 | 0.9802 |
73
+ | 0.2983 | 4.98 | 165 | 0.3394 | 0.9802 |
74
 
75
 
76
  ### Framework versions