File size: 900 Bytes
c3d4b5c 59f1c5c c3d4b5c 59f1c5c c3d4b5c 59f1c5c c3d4b5c 59f1c5c c3d4b5c 61d393a c3d4b5c a0b942b c3d4b5c 59f1c5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
---
language: vi
datasets:
- Yuhthe/vietnews
tags:
- summarization
license: mit
widget:
- text: Input text.
---
# fastAbs-large Finetuned on `vietnews` Abstractive Summarization
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("polieste/fastAbs_large")
model = AutoModelForSeq2SeqLM.from_pretrained("polieste/fastAbs_large")
model.cuda()
sentence = "Input text"
text = "vietnews: " + sentence + " </s>"
encoding = tokenizer(text, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=512,
early_stopping=True
)
for output in outputs:
line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(line)
``` |