polowitty commited on
Commit
027d67c
·
1 Parent(s): 43eafc7

PPO on LunarLander-v2 env, first commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -119.48 +/- 127.79
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d1c0f929c60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d1c0f929cf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d1c0f929d80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d1c0f929e10>", "_build": "<function ActorCriticPolicy._build at 0x7d1c0f929ea0>", "forward": "<function ActorCriticPolicy.forward at 0x7d1c0f929f30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d1c0f929fc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d1c0f92a050>", "_predict": "<function ActorCriticPolicy._predict at 0x7d1c0f92a0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d1c0f92a170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d1c0f92a200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d1c0f92a290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d1c0face840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 229376, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695727271346152520, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1Apr0Duy0/ViZgvPweU75sZ/o8oCMgPgAAAAAAAAAAhkFXvs/dYD9yzrG8MRz1vaCPDby13te8AAAAAAAAAADNd+K87JSmP3YLfr6Xqr++nhSUPVoYJD4AAAAAAAAAAEY8sb43K0u9oNtNvgI7pbx6FII+fwhLvQAAAAAAAAAAGry3PdyXsj90xy0/PE9RvOG4fLz9OiU9AAAAAAAAAACzPyE9j241utUo0TzK7gy5UhMMOXNUDLgAAIA/AACAP9Zhsj4fYpg/VpQRPyfBo750kP09tehTvQAAAAAAAAAAlgoqv3hQsjztpRo/PBUUvc09nD0Q8cw+AAAAAAAAAADzkuc9XH8WORLHYTyihUg95c+yO1TpKD4AAIA/AACAPzqckj5HkDM//TU1PumC2b5xap28AI5gvQAAAAAAAAAAzQoWPN8LkzyeET08Pl+sviO4Hr5eOg69AAAAAAAAAABaoAo/L06+Pr6AWD4D0jC/7GASPkMnrL0AAAAAAAAAAIOUSL85dAk+BD1Jvfe2w728RkE8FpX+vgAAAAAAAIA/oFq0PsV7fz+GuKk+u8NNvtnDCD6w+Ng9AAAAAAAAAABmyLi8ZACwPtNnPz3vM9K+aeHbvfskGL0AAAAAAAAAADb5yT6DWw8/sw1+Pv57m76HEhA+s3u/PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQA2JAt4A0beMAWyUS7qMAXSUR0B6WSGcnVoYdX2UKGgGR0A68TQE6kqMaAdLoGgIR0B7uMYrJ8v3dX2UKGgGR8A/iPLgXMyKaAdNKwFoCEdAe7mesxO+I3V9lChoBkfANSjWK/EfkmgHS49oCEdAe76TTfBN23V9lChoBkdAMTAU5+6RQ2gHS4toCEdAe79ssxwhn3V9lChoBkdARg7ZWaMJhWgHS4xoCEdAe8lH7xd6cHV9lChoBkfAKiB0p3HJcWgHS5VoCEdAe9AWiUPhAHV9lChoBkdAIagfEGZ/kWgHS41oCEdAe9N8a4tpVXV9lChoBkdANn1me18b72gHS7toCEdAe9vvBrN4aHV9lChoBkfARTslAu7HyWgHS6JoCEdAe9weGfwqiHV9lChoBkfASZy/bj94vGgHS59oCEdAe+L9BKL88HV9lChoBkfARJWoP07KaGgHS5VoCEdAfALfG+9Jz3V9lChoBkfAJ0VrhzeXRmgHS7loCEdAfAt+LFXJYHV9lChoBkfAPrbSZ0CA+mgHS+RoCEdAfBBqzZ6D5HV9lChoBkdAVDu+VTrE+GgHTegDaAhHQHwTZUYKpkx1fZQoaAZHwFf3a/RE4NtoB01CAWgIR0B8FaQjlgc+dX2UKGgGR8Ax1TfR/mT1aAdLlGgIR0B8HBqcmShbdX2UKGgGR8A3D+JP69CeaAdLuWgIR0B8IDjGT9sKdX2UKGgGR0BKlnMEA5q/aAdN6ANoCEdAfCinE2pAEHV9lChoBkc/zf29L6DXe2gHS5JoCEdAfEi7zTWoWHV9lChoBkdAUsUkjX4CZGgHTegDaAhHQHxJjg/C66J1fZQoaAZHQDFpItlI3BJoB0vIaAhHQHxQEedTYNB1fZQoaAZHQEE3UZvUBn1oB0vOaAhHQHxV3bRF7Up1fZQoaAZHQEAn3t8eCCloB0u8aAhHQHxaZEhJRO11fZQoaAZHQEZMjVx0dR1oB03oA2gIR0B8XMXenAIqdX2UKGgGR8BUphbbDdgwaAdL0WgIR0B8ZQH/tICmdX2UKGgGR8AhwA93bEgoaAdLe2gIR0B8Z3OryUcGdX2UKGgGR0A/KAskIHC5aAdLZ2gIR0B8bssAeaKDdX2UKGgGR0A6AEBKcurZaAdN6ANoCEdAfG+8IRh+fHV9lChoBkfAL4e1SflIVmgHS4VoCEdAfHBK0D2alXV9lChoBkdAYdhR0lqrR2gHTegDaAhHQHxz0S26TW51fZQoaAZHwDUUsZpBX0ZoB0vEaAhHQHx3Hz+WGAV1fZQoaAZHv/NqebutwJhoB0uHaAhHQHyL/WUbDMx1fZQoaAZHQBDJtelbeM1oB0uHaAhHQHyNWdd3Srp1fZQoaAZHwDH8Ug0TDfpoB0vEaAhHQHyS5sO5J9R1fZQoaAZHwEBBCzC1qnFoB0vYaAhHQHyVE9lmOEN1fZQoaAZHwEZlmOlwcYJoB00IAWgIR0B8l/P4VRDUdX2UKGgGR8AsAKbayrxRaAdLt2gIR0B8nNRQ79ycdX2UKGgGR0AzPio86mwaaAdN6ANoCEdAfKIVbRneznV9lChoBkfAQa39vS+g12gHS+BoCEdAfKJHvc8DCHV9lChoBke/0qcd5prULGgHS/hoCEdAfK77GNrCWXV9lChoBkdAO6kgjhUBGWgHS5xoCEdAfLhbtJFspHV9lChoBkdAM6xpxm03O2gHS4VoCEdAfLpgXdj5K3V9lChoBkdAT4ZOpKjBVWgHTegDaAhHQHy65/wy6+Z1fZQoaAZHQDKBkf9xZMdoB0v4aAhHQHzFvt6X0Gx1fZQoaAZHQFNKRaX8fmtoB03oA2gIR0B8yRUCJXQudX2UKGgGR8BB38H4XXRPaAdLyWgIR0B8zi9Gqgh9dX2UKGgGR8Bft7/ffoA5aAdL/WgIR0B80I/3WWhRdX2UKGgGR8BPp77CSA6NaAdL62gIR0B81dn6Eal2dX2UKGgGR8A1SELH+6y0aAdLlWgIR0B82+KtPpIMdX2UKGgGR0AlY6Kcd5praAdL1WgIR0B83kv/R3NcdX2UKGgGR8Ay2JEYwZflaAdLfmgIR0B84lrULDyfdX2UKGgGR8BYNfbCaZx8aAdNhgFoCEdAfOWBDXvphXV9lChoBkdAVT0jt5UtI2gHTegDaAhHQHzqQF5fMOh1fZQoaAZHQDqhWyTpxFRoB0vMaAhHQHzrFvAGjbl1fZQoaAZHQCEivV3EAHVoB0uraAhHQHz6U+Pikwh1fZQoaAZHQDJ8z7/GVA1oB00pAWgIR0B9Au7+T/yYdX2UKGgGRz/cOc2BJ7LMaAdLgmgIR0B9CDci4axYdX2UKGgGR8AwUao/A0sOaAdLnWgIR0B9CNtygf2cdX2UKGgGRz/noy0rsjVyaAdN6ANoCEdAfQrdB0IToXV9lChoBkfAJcNnGsFMZmgHS7JoCEdAfRIYvWYnfHV9lChoBkdAFs9OymhufmgHTegDaAhHQH0T0GqxTsJ1fZQoaAZHwFAoDQJHAh1oB0v/aAhHQH0WUHlfZ291fZQoaAZHQBa2ig00m+loB0uYaAhHQH0Wnf2saKl1fZQoaAZHQEtff8/D+BJoB03oA2gIR0B9G5PWQOnVdX2UKGgGR0BDofixVyWBaAdLjGgIR0B9J+aQV9F4dX2UKGgGR8BUA6ur6tT2aAdNHgFoCEdAfTiZxaPjn3V9lChoBkfARV4lyBClamgHS+5oCEdAfTvWilBQenV9lChoBkfAKY2LYPGyX2gHS8FoCEdAfTwstkFwDXV9lChoBkdAQC5aiblRxmgHS8poCEdAfT7pHqeK9HV9lChoBkfAQWZeVs1sL2gHTYkBaAhHQH1ATKxLTQV1fZQoaAZHwDUh+PRzBARoB0uzaAhHQH1D0YXO4Xp1fZQoaAZHQAd7hvR7Z39oB03oA2gIR0B9S4o8ZDRddX2UKGgGRz/nshPj4pMIaAdL1mgIR0B9Thiy6cy4dX2UKGgGR8BVY0EC/47BaAdNIQFoCEdAfVBZx7zClHV9lChoBkdAK9UUGmk30mgHTRMBaAhHQH1TbQLNOdp1fZQoaAZHQERRgpBomHBoB0t9aAhHQH1T81sLv1F1fZQoaAZHQAv3Ytg8bJhoB0vjaAhHQH1ZSrT6SDB1fZQoaAZHwCsDjHXEqDtoB0t8aAhHQH1Z3kgfU4J1fZQoaAZHwEjWQZGax5doB00yAWgIR0B9WkAXEZR9dX2UKGgGR8BJaFL39JjEaAdLvGgIR0B9YcddVvMsdX2UKGgGR8A4rENOM2m6aAdLnWgIR0B9acORT0g9dX2UKGgGR8AzX9ECvHLiaAdL+GgIR0B9a/Xbuc+adX2UKGgGR8BKem4ZuQ6qaAdNIAFoCEdAfW9NsnAqNXV9lChoBkdAH4g3Lmp2lmgHS79oCEdAfXaOclPac3V9lChoBkdAUhgeU6gdwWgHTegDaAhHQH15l6mfoRt1fZQoaAZHwEaJBRAKOT9oB0v+aAhHQH16KlLvkR11fZQoaAZHwEu/k4FRpDhoB0uyaAhHQH17eEdvKlp1fZQoaAZHQDz8Vgx8D0VoB0t3aAhHQH2FgL7XQMR1fZQoaAZHwESd4ubqhURoB0ukaAhHQH2I1o6CDmN1fZQoaAZHwDh9lNDc/MZoB0v8aAhHQH2JLYGt6ol1fZQoaAZHQDlEXEZR8+loB0upaAhHQH2L0v9LpRp1fZQoaAZHQEQzowmE5ABoB0tqaAhHQH2O2vGIbfh1fZQoaAZHwB3pPRArxy5oB0v+aAhHQH2SL0J4SpR1fZQoaAZHQCcQPRRdhRZoB0uNaAhHQH2T9pVS4vx1fZQoaAZHwD/u4kNWluZoB0upaAhHQH2Wli8WbgF1fZQoaAZHwCow46wMYuVoB0uraAhHQH2ajJ+2E011fZQoaAZHwFTPajN6gNBoB01zAWgIR0B9n/t5UtI1dX2UKGgGR0A7s/336AOKaAdN6ANoCEdAfahEP1+RYHV9lChoBkfAK8D28IzFdmgHS5xoCEdAfain5BTn73VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d78e8306f22425fbb79007367e3d255a2335517acfc53f6f92c462d6fadb3980
3
+ size 146657
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d1c0f929c60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d1c0f929cf0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d1c0f929d80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d1c0f929e10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d1c0f929ea0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d1c0f929f30>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d1c0f929fc0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d1c0f92a050>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d1c0f92a0e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d1c0f92a170>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d1c0f92a200>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d1c0f92a290>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d1c0face840>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 229376,
25
+ "_total_timesteps": 200000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1695727271346152520,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1Apr0Duy0/ViZgvPweU75sZ/o8oCMgPgAAAAAAAAAAhkFXvs/dYD9yzrG8MRz1vaCPDby13te8AAAAAAAAAADNd+K87JSmP3YLfr6Xqr++nhSUPVoYJD4AAAAAAAAAAEY8sb43K0u9oNtNvgI7pbx6FII+fwhLvQAAAAAAAAAAGry3PdyXsj90xy0/PE9RvOG4fLz9OiU9AAAAAAAAAACzPyE9j241utUo0TzK7gy5UhMMOXNUDLgAAIA/AACAP9Zhsj4fYpg/VpQRPyfBo750kP09tehTvQAAAAAAAAAAlgoqv3hQsjztpRo/PBUUvc09nD0Q8cw+AAAAAAAAAADzkuc9XH8WORLHYTyihUg95c+yO1TpKD4AAIA/AACAPzqckj5HkDM//TU1PumC2b5xap28AI5gvQAAAAAAAAAAzQoWPN8LkzyeET08Pl+sviO4Hr5eOg69AAAAAAAAAABaoAo/L06+Pr6AWD4D0jC/7GASPkMnrL0AAAAAAAAAAIOUSL85dAk+BD1Jvfe2w728RkE8FpX+vgAAAAAAAIA/oFq0PsV7fz+GuKk+u8NNvtnDCD6w+Ng9AAAAAAAAAABmyLi8ZACwPtNnPz3vM9K+aeHbvfskGL0AAAAAAAAAADb5yT6DWw8/sw1+Pv57m76HEhA+s3u/PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.1468799999999999,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQA2JAt4A0beMAWyUS7qMAXSUR0B6WSGcnVoYdX2UKGgGR0A68TQE6kqMaAdLoGgIR0B7uMYrJ8v3dX2UKGgGR8A/iPLgXMyKaAdNKwFoCEdAe7mesxO+I3V9lChoBkfANSjWK/EfkmgHS49oCEdAe76TTfBN23V9lChoBkdAMTAU5+6RQ2gHS4toCEdAe79ssxwhn3V9lChoBkdARg7ZWaMJhWgHS4xoCEdAe8lH7xd6cHV9lChoBkfAKiB0p3HJcWgHS5VoCEdAe9AWiUPhAHV9lChoBkdAIagfEGZ/kWgHS41oCEdAe9N8a4tpVXV9lChoBkdANn1me18b72gHS7toCEdAe9vvBrN4aHV9lChoBkfARTslAu7HyWgHS6JoCEdAe9weGfwqiHV9lChoBkfASZy/bj94vGgHS59oCEdAe+L9BKL88HV9lChoBkfARJWoP07KaGgHS5VoCEdAfALfG+9Jz3V9lChoBkfAJ0VrhzeXRmgHS7loCEdAfAt+LFXJYHV9lChoBkfAPrbSZ0CA+mgHS+RoCEdAfBBqzZ6D5HV9lChoBkdAVDu+VTrE+GgHTegDaAhHQHwTZUYKpkx1fZQoaAZHwFf3a/RE4NtoB01CAWgIR0B8FaQjlgc+dX2UKGgGR8Ax1TfR/mT1aAdLlGgIR0B8HBqcmShbdX2UKGgGR8A3D+JP69CeaAdLuWgIR0B8IDjGT9sKdX2UKGgGR0BKlnMEA5q/aAdN6ANoCEdAfCinE2pAEHV9lChoBkc/zf29L6DXe2gHS5JoCEdAfEi7zTWoWHV9lChoBkdAUsUkjX4CZGgHTegDaAhHQHxJjg/C66J1fZQoaAZHQDFpItlI3BJoB0vIaAhHQHxQEedTYNB1fZQoaAZHQEE3UZvUBn1oB0vOaAhHQHxV3bRF7Up1fZQoaAZHQEAn3t8eCCloB0u8aAhHQHxaZEhJRO11fZQoaAZHQEZMjVx0dR1oB03oA2gIR0B8XMXenAIqdX2UKGgGR8BUphbbDdgwaAdL0WgIR0B8ZQH/tICmdX2UKGgGR8AhwA93bEgoaAdLe2gIR0B8Z3OryUcGdX2UKGgGR0A/KAskIHC5aAdLZ2gIR0B8bssAeaKDdX2UKGgGR0A6AEBKcurZaAdN6ANoCEdAfG+8IRh+fHV9lChoBkfAL4e1SflIVmgHS4VoCEdAfHBK0D2alXV9lChoBkdAYdhR0lqrR2gHTegDaAhHQHxz0S26TW51fZQoaAZHwDUUsZpBX0ZoB0vEaAhHQHx3Hz+WGAV1fZQoaAZHv/NqebutwJhoB0uHaAhHQHyL/WUbDMx1fZQoaAZHQBDJtelbeM1oB0uHaAhHQHyNWdd3Srp1fZQoaAZHwDH8Ug0TDfpoB0vEaAhHQHyS5sO5J9R1fZQoaAZHwEBBCzC1qnFoB0vYaAhHQHyVE9lmOEN1fZQoaAZHwEZlmOlwcYJoB00IAWgIR0B8l/P4VRDUdX2UKGgGR8AsAKbayrxRaAdLt2gIR0B8nNRQ79ycdX2UKGgGR0AzPio86mwaaAdN6ANoCEdAfKIVbRneznV9lChoBkfAQa39vS+g12gHS+BoCEdAfKJHvc8DCHV9lChoBke/0qcd5prULGgHS/hoCEdAfK77GNrCWXV9lChoBkdAO6kgjhUBGWgHS5xoCEdAfLhbtJFspHV9lChoBkdAM6xpxm03O2gHS4VoCEdAfLpgXdj5K3V9lChoBkdAT4ZOpKjBVWgHTegDaAhHQHy65/wy6+Z1fZQoaAZHQDKBkf9xZMdoB0v4aAhHQHzFvt6X0Gx1fZQoaAZHQFNKRaX8fmtoB03oA2gIR0B8yRUCJXQudX2UKGgGR8BB38H4XXRPaAdLyWgIR0B8zi9Gqgh9dX2UKGgGR8Bft7/ffoA5aAdL/WgIR0B80I/3WWhRdX2UKGgGR8BPp77CSA6NaAdL62gIR0B81dn6Eal2dX2UKGgGR8A1SELH+6y0aAdLlWgIR0B82+KtPpIMdX2UKGgGR0AlY6Kcd5praAdL1WgIR0B83kv/R3NcdX2UKGgGR8Ay2JEYwZflaAdLfmgIR0B84lrULDyfdX2UKGgGR8BYNfbCaZx8aAdNhgFoCEdAfOWBDXvphXV9lChoBkdAVT0jt5UtI2gHTegDaAhHQHzqQF5fMOh1fZQoaAZHQDqhWyTpxFRoB0vMaAhHQHzrFvAGjbl1fZQoaAZHQCEivV3EAHVoB0uraAhHQHz6U+Pikwh1fZQoaAZHQDJ8z7/GVA1oB00pAWgIR0B9Au7+T/yYdX2UKGgGRz/cOc2BJ7LMaAdLgmgIR0B9CDci4axYdX2UKGgGR8AwUao/A0sOaAdLnWgIR0B9CNtygf2cdX2UKGgGRz/noy0rsjVyaAdN6ANoCEdAfQrdB0IToXV9lChoBkfAJcNnGsFMZmgHS7JoCEdAfRIYvWYnfHV9lChoBkdAFs9OymhufmgHTegDaAhHQH0T0GqxTsJ1fZQoaAZHwFAoDQJHAh1oB0v/aAhHQH0WUHlfZ291fZQoaAZHQBa2ig00m+loB0uYaAhHQH0Wnf2saKl1fZQoaAZHQEtff8/D+BJoB03oA2gIR0B9G5PWQOnVdX2UKGgGR0BDofixVyWBaAdLjGgIR0B9J+aQV9F4dX2UKGgGR8BUA6ur6tT2aAdNHgFoCEdAfTiZxaPjn3V9lChoBkfARV4lyBClamgHS+5oCEdAfTvWilBQenV9lChoBkfAKY2LYPGyX2gHS8FoCEdAfTwstkFwDXV9lChoBkdAQC5aiblRxmgHS8poCEdAfT7pHqeK9HV9lChoBkfAQWZeVs1sL2gHTYkBaAhHQH1ATKxLTQV1fZQoaAZHwDUh+PRzBARoB0uzaAhHQH1D0YXO4Xp1fZQoaAZHQAd7hvR7Z39oB03oA2gIR0B9S4o8ZDRddX2UKGgGRz/nshPj4pMIaAdL1mgIR0B9Thiy6cy4dX2UKGgGR8BVY0EC/47BaAdNIQFoCEdAfVBZx7zClHV9lChoBkdAK9UUGmk30mgHTRMBaAhHQH1TbQLNOdp1fZQoaAZHQERRgpBomHBoB0t9aAhHQH1T81sLv1F1fZQoaAZHQAv3Ytg8bJhoB0vjaAhHQH1ZSrT6SDB1fZQoaAZHwCsDjHXEqDtoB0t8aAhHQH1Z3kgfU4J1fZQoaAZHwEjWQZGax5doB00yAWgIR0B9WkAXEZR9dX2UKGgGR8BJaFL39JjEaAdLvGgIR0B9YcddVvMsdX2UKGgGR8A4rENOM2m6aAdLnWgIR0B9acORT0g9dX2UKGgGR8AzX9ECvHLiaAdL+GgIR0B9a/Xbuc+adX2UKGgGR8BKem4ZuQ6qaAdNIAFoCEdAfW9NsnAqNXV9lChoBkdAH4g3Lmp2lmgHS79oCEdAfXaOclPac3V9lChoBkdAUhgeU6gdwWgHTegDaAhHQH15l6mfoRt1fZQoaAZHwEaJBRAKOT9oB0v+aAhHQH16KlLvkR11fZQoaAZHwEu/k4FRpDhoB0uyaAhHQH17eEdvKlp1fZQoaAZHQDz8Vgx8D0VoB0t3aAhHQH2FgL7XQMR1fZQoaAZHwESd4ubqhURoB0ukaAhHQH2I1o6CDmN1fZQoaAZHwDh9lNDc/MZoB0v8aAhHQH2JLYGt6ol1fZQoaAZHQDlEXEZR8+loB0upaAhHQH2L0v9LpRp1fZQoaAZHQEQzowmE5ABoB0tqaAhHQH2O2vGIbfh1fZQoaAZHwB3pPRArxy5oB0v+aAhHQH2SL0J4SpR1fZQoaAZHQCcQPRRdhRZoB0uNaAhHQH2T9pVS4vx1fZQoaAZHwD/u4kNWluZoB0upaAhHQH2Wli8WbgF1fZQoaAZHwCow46wMYuVoB0uraAhHQH2ajJ+2E011fZQoaAZHwFTPajN6gNBoB01zAWgIR0B9n/t5UtI1dX2UKGgGR0A7s/336AOKaAdN6ANoCEdAfahEP1+RYHV9lChoBkfAK8D28IzFdmgHS5xoCEdAfain5BTn73VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 70,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad42b3df5a62cf221880b156839827c42d1934de6299f3b9fa8efbb33012ee82
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e858c73c5f8a49cc27e2796461901fe2fd5519fb1c1aff74a763e63b060bc7d
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (206 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -119.47749590000001, "std_reward": 127.79073879733542, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-26T11:36:54.558511"}