File size: 2,204 Bytes
6ecb60a
525506b
 
6ecb60a
 
 
 
525506b
 
 
 
6ecb60a
525506b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ecb60a
 
 
 
 
525506b
6ecb60a
525506b
 
 
 
6ecb60a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525506b
 
 
 
 
 
 
 
 
 
6ecb60a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- yue
license: apache-2.0
base_model: poppysmickarlili/whisper-small-cantonese_02-05-2024-1727
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Small Cantanese
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 17.0
      type: mozilla-foundation/common_voice_17_0
      config: yue
      split: None
      args: 'config: yue, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 57.34134434847916
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Cantanese

This model is a fine-tuned version of [poppysmickarlili/whisper-small-cantonese_02-05-2024-1727](https://huggingface.co/poppysmickarlili/whisper-small-cantonese_02-05-2024-1727) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3536
- Wer: 57.3413

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0168        | 1.3908 | 1000 | 0.3280          | 59.7446 |
| 0.0046        | 2.7816 | 2000 | 0.3460          | 58.9185 |
| 0.0005        | 4.1725 | 3000 | 0.3504          | 57.1911 |
| 0.0002        | 5.5633 | 4000 | 0.3536          | 57.3413 |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.0
- Datasets 2.19.1
- Tokenizers 0.19.1