--- base_model: sentence-transformers/all-MiniLM-L6-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Enable audio recorder app - text: Open video camera mode - text: Show recent chats - text: Switch to instant camera usage mode - text: Could you switch to video camera mode? inference: true model-index: - name: SetFit with sentence-transformers/all-MiniLM-L6-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with sentence-transformers/all-MiniLM-L6-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 256 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-----------|:----------------------------------------------------------------------------------------------------------------------------------| | microphone | | | history | | | camera | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("porxelek/word-classification") # Run inference preds = model("Show recent chats") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 2 | 4.1364 | 10 | | Label | Training Sample Count | |:-----------|:----------------------| | camera | 250 | | history | 150 | | microphone | 150 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:--------:|:-------------:|:---------------:| | 0.0003 | 1 | 0.1209 | - | | 0.0164 | 50 | 0.1449 | - | | 0.0328 | 100 | 0.046 | - | | 0.0492 | 150 | 0.0099 | - | | 0.0656 | 200 | 0.0049 | - | | 0.0820 | 250 | 0.0036 | - | | 0.0985 | 300 | 0.0022 | - | | 0.1149 | 350 | 0.0015 | - | | 0.1313 | 400 | 0.0011 | - | | 0.1477 | 450 | 0.001 | - | | 0.1641 | 500 | 0.0009 | - | | 0.1805 | 550 | 0.0009 | - | | 0.1969 | 600 | 0.0009 | - | | 0.2133 | 650 | 0.0008 | - | | 0.2297 | 700 | 0.0007 | - | | 0.2461 | 750 | 0.0006 | - | | 0.2626 | 800 | 0.0006 | - | | 0.2790 | 850 | 0.0006 | - | | 0.2954 | 900 | 0.0006 | - | | 0.3118 | 950 | 0.0005 | - | | 0.3282 | 1000 | 0.0004 | - | | 0.3446 | 1050 | 0.0005 | - | | 0.3610 | 1100 | 0.0005 | - | | 0.3774 | 1150 | 0.0004 | - | | 0.3938 | 1200 | 0.0004 | - | | 0.4102 | 1250 | 0.0004 | - | | 0.4266 | 1300 | 0.0005 | - | | 0.4431 | 1350 | 0.0004 | - | | 0.4595 | 1400 | 0.0003 | - | | 0.4759 | 1450 | 0.0003 | - | | 0.4923 | 1500 | 0.0003 | - | | 0.5087 | 1550 | 0.0003 | - | | 0.5251 | 1600 | 0.0003 | - | | 0.5415 | 1650 | 0.0003 | - | | 0.5579 | 1700 | 0.0003 | - | | 0.5743 | 1750 | 0.0003 | - | | 0.5907 | 1800 | 0.0003 | - | | 0.6072 | 1850 | 0.0002 | - | | 0.6236 | 1900 | 0.0003 | - | | 0.6400 | 1950 | 0.0002 | - | | 0.6564 | 2000 | 0.0002 | - | | 0.6728 | 2050 | 0.0002 | - | | 0.6892 | 2100 | 0.0003 | - | | 0.7056 | 2150 | 0.0002 | - | | 0.7220 | 2200 | 0.0002 | - | | 0.7384 | 2250 | 0.0002 | - | | 0.7548 | 2300 | 0.0002 | - | | 0.7713 | 2350 | 0.0002 | - | | 0.7877 | 2400 | 0.0002 | - | | 0.8041 | 2450 | 0.0002 | - | | 0.8205 | 2500 | 0.0002 | - | | 0.8369 | 2550 | 0.0002 | - | | 0.8533 | 2600 | 0.0002 | - | | 0.8697 | 2650 | 0.0002 | - | | 0.8861 | 2700 | 0.0002 | - | | 0.9025 | 2750 | 0.0002 | - | | 0.9189 | 2800 | 0.0002 | - | | 0.9353 | 2850 | 0.0002 | - | | 0.9518 | 2900 | 0.0002 | - | | 0.9682 | 2950 | 0.0002 | - | | 0.9846 | 3000 | 0.0002 | - | | **1.0** | **3047** | **-** | **0.0** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.39.0 - PyTorch: 2.3.1+cu121 - Datasets: 2.20.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```