update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103-mlm-multi-emails-hq-x2bs
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103-mlm-multi-emails-hq-x2bs
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [saghar/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103](https://huggingface.co/saghar/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.0371
|
19 |
+
- Accuracy: 0.6450
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0002
|
39 |
+
- train_batch_size: 16
|
40 |
+
- eval_batch_size: 2
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 64
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: cosine
|
47 |
+
- lr_scheduler_warmup_ratio: 0.05
|
48 |
+
- num_epochs: 16.0
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
+
| 3.2947 | 1.0 | 308 | 3.0832 | 0.5122 |
|
55 |
+
| 2.8727 | 2.0 | 616 | 2.6722 | 0.5662 |
|
56 |
+
| 2.6339 | 3.0 | 924 | 2.4797 | 0.5878 |
|
57 |
+
| 2.5053 | 4.0 | 1232 | 2.3833 | 0.6025 |
|
58 |
+
| 2.4531 | 5.0 | 1540 | 2.3085 | 0.6106 |
|
59 |
+
| 2.2852 | 6.0 | 1848 | 2.2451 | 0.6175 |
|
60 |
+
| 2.228 | 7.0 | 2156 | 2.1937 | 0.6244 |
|
61 |
+
| 2.2013 | 8.0 | 2464 | 2.1446 | 0.6310 |
|
62 |
+
| 2.1463 | 9.0 | 2772 | 2.1062 | 0.6357 |
|
63 |
+
| 2.0882 | 10.0 | 3080 | 2.0847 | 0.6370 |
|
64 |
+
| 2.1669 | 11.0 | 3388 | 2.0687 | 0.6399 |
|
65 |
+
| 2.0983 | 12.0 | 3696 | 2.0629 | 0.6423 |
|
66 |
+
| 2.1215 | 13.0 | 4004 | 2.0259 | 0.6476 |
|
67 |
+
| 2.1255 | 14.0 | 4312 | 2.0378 | 0.6461 |
|
68 |
+
| 2.1751 | 15.0 | 4620 | 2.0257 | 0.6458 |
|
69 |
+
| 1.9516 | 16.0 | 4928 | 2.0371 | 0.6450 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.27.0.dev0
|
75 |
+
- Pytorch 2.0.0.dev20230212+cu118
|
76 |
+
- Datasets 2.9.0
|
77 |
+
- Tokenizers 0.13.2
|