File size: 6,332 Bytes
c55e890
 
 
 
aa415a8
 
 
 
 
 
 
accdf0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa415a8
 
 
 
accdf0e
aa415a8
 
 
 
 
accdf0e
7e772af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c55e890
 
 
aa415a8
c55e890
aa415a8
c55e890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e772af
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
---
license: apache-2.0
tags:
- generated_from_trainer
- text generation
- email generation
- email
datasets:
- aeslc
- postbot/multi-emails-100k
widget:
- text: 'Good Morning Professor Beans,

    Hope you are doing well. I just wanted to reach out and ask if differential calculus
    will be on the exam'
  example_title: email to prof
- text: 'Hey <NAME>,


    Thank you for signing up for my weekly newsletter. Before we get started, you''ll
    have to confirm your email address.'
  example_title: newsletter
- text: 'Hi <NAME>,


    I hope this email finds you well. I wanted to reach out and ask about office hours'
  example_title: office hours
- text: 'Greetings <NAME>,


    I hope you had a splendid evening at the Company sausage eating festival. I am
    reaching out because'
  example_title: festival
- text: 'Good Morning Harold,


    I was wondering when the next'
  example_title: event
- text: URGENT - I need the TPS reports
  example_title: URGENT
- text: 'Hi Archibald,


    I hope this email finds you extremely well.'
  example_title: emails that find you
- text: 'Hello there.


    I just wanted to reach out and check in to'
  example_title: checking in
- text: 'Hello <NAME>,


    I hope this email finds you well. I wanted to reach out and see if you''ve enjoyed
    your time with us'
  example_title: work well
- text: 'Hi <NAME>,


    I hope this email finds you well. I wanted to reach out and see if we could catch
    up'
  example_title: catch up
- text: I'm <NAME> and I just moved into the area and wanted to reach out and get
    some details on where I could get groceries and
  example_title: grocery
parameters:
  min_length: 32
  max_length: 128
  no_repeat_ngram_size: 2
  do_sample: true
  temperature: 0.4
  top_k: 30
  top_p: 0.9
  repetition_penalty: 3.5
  length_penalty: 0.9
base_model: EleutherAI/gpt-neo-1.3B
model-index:
- name: gpt-neo-1.3B-emailgen
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 29.95
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=postbot/gpt-neo-1.3B-emailgen
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 47.95
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=postbot/gpt-neo-1.3B-emailgen
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 24.11
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=postbot/gpt-neo-1.3B-emailgen
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 42.55
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=postbot/gpt-neo-1.3B-emailgen
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 56.27
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=postbot/gpt-neo-1.3B-emailgen
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.0
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=postbot/gpt-neo-1.3B-emailgen
      name: Open LLM Leaderboard
---


# gpt-neo-1.3B-emailgen

This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the postbot/multi-emails-100k dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6930

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8669        | 1.0   | 789  | 1.7866          |
| 1.4049        | 2.0   | 1578 | 1.6930          |


### Framework versions

- Transformers 4.22.2
- Pytorch 1.10.0+cu113
- Tokenizers 0.12.1

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_postbot__gpt-neo-1.3B-emailgen)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |33.47|
|AI2 Reasoning Challenge (25-Shot)|29.95|
|HellaSwag (10-Shot)              |47.95|
|MMLU (5-Shot)                    |24.11|
|TruthfulQA (0-shot)              |42.55|
|Winogrande (5-shot)              |56.27|
|GSM8k (5-shot)                   | 0.00|