Join the conversation

Join the community of Machine Learners and AI enthusiasts.

Sign Up
lewtunΒ 
posted an update 8 days ago
Post
6407
We outperform Llama 70B with Llama 3B on hard math by scaling test-time compute πŸ”₯

How? By combining step-wise reward models with tree search algorithms :)

We show that smol models can match or exceed the performance of their much larger siblings when given enough "time to think"

We're open sourcing the full recipe and sharing a detailed blog post.

In our blog post we cover:

πŸ“ˆ Compute-optimal scaling: How we implemented DeepMind's recipe to boost the mathematical capabilities of open models at test-time.

πŸŽ„ Diverse Verifier Tree Search (DVTS): An unpublished extension we developed to the verifier-guided tree search technique. This simple yet effective method improves diversity and delivers better performance, particularly at large test-time compute budgets.

🧭 Search and Learn: A lightweight toolkit for implementing search strategies with LLMs and built for speed with vLLM

Here's the links:

- Blog post: HuggingFaceH4/blogpost-scaling-test-time-compute

- Code: https://github.com/huggingface/search-and-learn

Enjoy!

Thank You for open sourcing this!!

Wow people... This is CRACKED! THANK YOU HF!!!