Join the conversation

Join the community of Machine Learners and AI enthusiasts.

Sign Up
vincentg64 
posted an update Jul 26, 2024
Post
573
Custom Enterprise LLM/RAG with Real-Time Fine-Tuning https://mltblog.com/3WcTS9C -- Just released!

This article features an application of xLLM to extract information from a corporate corpus, using prompts referred to as “queries”. The goal is to serve the business user — typically an employee of the company or someone allowed access — with condensed, relevant pieces of information including links, examples, PDFs, tables, charts, definitions and so on, to professional queries.

My custom sub-LLM designed from scratch does not rely on any Python library or API, and performs better than search tools available on the market, in terms of speed and results relevancy. It offers the user the ability to fine-tune parameters in real time, and can detect user intent to deliver appropriate output. The good performance comes from the quality of the well-structured input sources, combined with smart crawling to retrieve the embedded knowledge graph and integrate it into the backend tables. Traditional tools rely mostly on tokens, embeddings, billions of parameters and frontend tricks such as prompt engineering to fix backend issues.

To the contrary, my approach focuses on building a solid backend foundational architecture from the ground up. Tokens and embeddings are not the most important components, by a long shot. Cosine similarity and dot products are replaced by pointwise mutual information. There is no neural network, no training, and a small number of explainable parameters, easy to fine-tune.


Read more, access the code and data, at https://mltblog.com/3WcTS9C
In this post