File size: 2,863 Bytes
de0b645
 
64fe88e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbd7818
 
 
 
ea97ed5
 
 
 
c4ced25
ea97ed5
65fda9e
 
 
 
 
 
de0b645
 
64fe88e
de0b645
64fe88e
de0b645
64fe88e
 
de0b645
64fe88e
 
de0b645
64fe88e
 
de0b645
64fe88e
de0b645
64fe88e
 
 
 
de0b645
 
64fe88e
de0b645
64fe88e
 
 
 
de0b645
64fe88e
de0b645
64fe88e
 
 
de0b645
64fe88e
de0b645
 
64fe88e
 
fbd7818
 
 
 
64fe88e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
tags:
- text-classification
- sentiment-analysis
- depression
- BERT
- mental-health
model-index:
- name: Sentiment Classifier for Depression
  results:
  - task:
      type: text-classification
    dataset:
      name: Custom Depression Tweets Dataset
      type: custom
    metrics:
    - name: Accuracy
      type: accuracy
      value: 99.87
    - name: Precision
      type: precision
      value: 99.91
    - name: Recall
      type: recall
      value: 99.81
    - name: F1 Score
      type: f1
      value: 99.86
license: apache-2.0
language:
- en
base_model: google-bert/bert-base-uncased
metrics:
- Accuracy
- Recall
- Percision
- F1 Score

widget:
  - text: "RT EichinChangLim In Talking About Adolescence Book you'll discover key strategies to tackle self-harm panic attacks bullies child"
    example_title: "Depression"
  - text: "SharronS Hello there Thanks for reaching out I can understand your frustration I would feel the same Id be happy to take a closer look Please feel free to send me a DM with your full name phone number and email address Lena"
    example_title: "Non-depression"

---

# Model Card for Sentiment Classifier for Depression

This model is a fine-tuned version of BERT (`bert-base-uncased`) for classifying text as either **Depression** or **Non-depression**. The model was trained on a custom dataset of mental health-related social media posts and has shown high accuracy in sentiment classification.

## Training Data
The model was trained on a custom dataset of tweets labeled as either depression-related or not. Data pre-processing included tokenization and removal of special characters.

## Training Procedure
The model was trained using Hugging Face's `transformers` library. The training was conducted on a T4 GPU over 3 epochs, with a batch size of 16 and a learning rate of 5e-5.

## Evaluation and Testing Data
The model was evaluated on a 20% holdout set from the custom dataset.

## Results

- **Accuracy:** 99.87%
- **Precision:** 99.91%
- **Recall:** 99.81%
- **F1 Score:** 99.86%

## Environmental Impact
The carbon emissions from training this model can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** T4 GPU
- **Hours used:** 1 hour
- **Cloud Provider:** Google Cloud (Colab)
- **Carbon Emitted:** Estimated at 0.45 kg CO2eq

## Technical Specifications

- **Architecture**: BERT (`bert-base-uncased`)
- **Training Hardware**: T4 GPU in Colab
- **Training Library**: Hugging Face `transformers`

## Citation

**BibTeX:**
```bibtex
@misc{poudel2024sentimentclassifier,
  author = {Poudel, Ashish},
  title = {Sentiment Classifier for Depression},
  year = {2024},
  url = {https://huggingface.co/poudel/sentiment-classifier},
}