--- base_model: - gradientai/Llama-3-8B-Instruct-Gradient-1048k - failspy/Llama-3-8B-Instruct-MopeyMule tags: - merge - mergekit - lazymergekit - gradientai/Llama-3-8B-Instruct-Gradient-1048k - failspy/Llama-3-8B-Instruct-MopeyMule --- # Llama-NextGen-9b Llama-NextGen-9b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [gradientai/Llama-3-8B-Instruct-Gradient-1048k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k) * [failspy/Llama-3-8B-Instruct-MopeyMule](https://huggingface.co/failspy/Llama-3-8B-Instruct-MopeyMule) ## 🧩 Configuration ```yaml slices: - sources: - model: gradientai/Llama-3-8B-Instruct-Gradient-1048k layer_range: [0, 16] - sources: - model: failspy/Llama-3-8B-Instruct-MopeyMule layer_range: [8, 32] merge_method: passthrough tokenizer_source: union dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "powermove72/Llama-NextGen-8b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```