Trained model with classification head weights
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: llama3.2
|
4 |
+
base_model: meta-llama/Llama-3.2-1B
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: defect-classification-llama-baseline-15-epochs
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# defect-classification-llama-baseline-15-epochs
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.1984
|
22 |
+
- Accuracy: 0.9311
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 2e-05
|
42 |
+
- train_batch_size: 512
|
43 |
+
- eval_batch_size: 512
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 15
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
53 |
+
| 0.8391 | 1.0 | 1062 | 0.8638 | 0.8010 |
|
54 |
+
| 0.5603 | 2.0 | 2124 | 0.5259 | 0.8492 |
|
55 |
+
| 0.4341 | 3.0 | 3186 | 0.4449 | 0.8659 |
|
56 |
+
| 0.3805 | 4.0 | 4248 | 0.4048 | 0.8587 |
|
57 |
+
| 0.3143 | 5.0 | 5310 | 0.3020 | 0.8974 |
|
58 |
+
| 0.2891 | 6.0 | 6372 | 0.2881 | 0.9011 |
|
59 |
+
| 0.2728 | 7.0 | 7434 | 0.2790 | 0.9036 |
|
60 |
+
| 0.305 | 8.0 | 8496 | 0.2568 | 0.9114 |
|
61 |
+
| 0.2382 | 9.0 | 9558 | 0.2377 | 0.9179 |
|
62 |
+
| 0.2258 | 10.0 | 10620 | 0.2202 | 0.9229 |
|
63 |
+
| 0.2202 | 11.0 | 11682 | 0.2180 | 0.9248 |
|
64 |
+
| 0.2153 | 12.0 | 12744 | 0.2249 | 0.9234 |
|
65 |
+
| 0.2026 | 13.0 | 13806 | 0.2039 | 0.9294 |
|
66 |
+
| 0.1972 | 14.0 | 14868 | 0.2009 | 0.9293 |
|
67 |
+
| 0.1987 | 15.0 | 15930 | 0.1984 | 0.9311 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.47.0
|
73 |
+
- Pytorch 2.5.1+cu124
|
74 |
+
- Datasets 3.2.0
|
75 |
+
- Tokenizers 0.21.0
|